css伪类与伪元素基础详解

伪类用于选择元素的特殊状态或位置,如:hover、:focus、:first-child等,以单冒号定义;伪元素用于创建不存在于DOM中的虚拟结构,如::before、::after、::first-letter,推荐用双冒号表示。两者语法和用途不同,伪类匹配状态,伪元素生成装饰性内容,掌握它们可提升CSS表现力。

css伪类与伪元素基础详解

CSS中的伪类和伪元素是用于选择和样式化特定状态或结构部分的特殊选择器。它们看起来像类或元素,但实际上并不在HTML中存在,而是由CSS动态生成或匹配某些条件。理解它们的区别和用法,对掌握CSS至关重要。

伪类(Pseudo-classes)

伪类用于定义元素的特殊状态或位置。它以冒号 : 开头,常见于用户交互、元素在文档中的位置等场景。

常用伪类示例::hover —— 鼠标悬停时触发,常用于按钮或链接的交互效果。 :focus —— 元素获得焦点时应用,如输入框被点击或Tab选中。 :active —— 元素被激活时(如鼠标按下),常用于按钮按下状态。 :visited —— 已访问过的链接,仅适用于 a 标签。 :first-child —— 匹配父元素下的第一个子元素。 :last-child —— 匹配父元素下的最后一个子元素。 :nth-child(n) —— 按位置选择第n个子元素,支持公式如 2n+1(奇数项)。 :not(selector) —— 排除符合指定选择器的元素。

例如,让列表中每一项鼠标悬停时背景变灰:

li:hover {  background-color: #f0f0f0;}

又如,选中第一个段落:

立即学习“前端免费学习笔记(深入)”;

p:first-child {  font-weight: bold;}

伪元素(Pseudo-elements)

伪元素用于创建不在DOM中实际存在的虚拟元素,通常用来装饰或插入内容。它使用双冒号 ::(也可用单冒号兼容旧浏览器),表示其“非真实元素”特性。

音疯 音疯

音疯是昆仑万维推出的一个AI音乐创作平台,每日可以免费生成6首歌曲。

音疯 146 查看详情 音疯 常见伪元素说明:::before —— 在元素内容前插入内容,常配合 content 属性使用。 ::after —— 在元素内容后插入内容,同样依赖 content::first-line —— 选中块级元素的第一行文本。 ::first-letter —— 选中块级元素首字符,适合首字放大效果。 ::selection —— 定义用户选中文本时的高亮样式。

比如,为每个警告提示前加一个感叹号:

.warning::before {  content: "⚠️ ";  color: red;}

实现首字下沉效果:

p::first-letter {  font-size: 2em;  float: left;  margin-right: 5px;}

修改选中文本的背景色:

::selection {  background-color: yellow;  color: black;}

伪类与伪元素的区别

核心区别在于用途和语法:

伪类描述的是状态或位置,如“悬停”、“第一个孩子”; 伪元素描述的是文档中不存在的结构部分,如“内容之前”、“首字母”; 语法上,伪元素推荐使用 ::,以区别于伪类的 :,尽管多数浏览器仍接受单冒号写法。

例如:a:hover 是伪类,表示链接的悬停状态;而 p::before 是伪元素,表示段落前插入的内容。

实用技巧与注意事项

使用 ::before::after 时,必须设置 content 属性,即使为空(如 content: "";)。 伪元素默认是 inline 元素,必要时可设为 display: block 或其他类型。 伪类可以链式使用,如 a:hover:focus 表示既悬停又聚焦的状态。 注意浏览器兼容性,尤其是 :nth-child::selection 在老版本IE中的支持情况。基本上就这些。掌握伪类和伪元素,能让你更灵活地控制页面表现,无需额外HTML标签也能实现丰富视觉效果。

以上就是css伪类与伪元素基础详解的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1059611.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月2日 05:45:17
下一篇 2025年12月2日 05:45:38

相关推荐

  • 使用 Selenium 上传本地文件到网站的正确方法

    本文档旨在指导开发者如何使用 Selenium WebDriver 在网页上上传本地文件。我们将通过一个实际示例,详细讲解如何定位文件上传元素,并使用 send_keys() 方法模拟文件上传操作。避免常见的 ElementNotInteractableException 错误,确保文件成功上传。 …

    2025年12月14日
    000
  • Python如何实现数据可视化?Matplotlib高级绘图技巧

    matplotlib创建可视化需掌握高级技巧。首先安装并导入库,使用plt.plot()、plt.scatter()等基础绘图函数;其次通过color、linestyle等参数自定义图形样式;接着利用plt.subplot()创建子图布局;还可绘制等高线图、三维图及动画;推荐结合seaborn提升美…

    2025年12月14日 好文分享
    000
  • 怎样用Python实现数据透视?crosstab交叉分析

    在python中,使用pandas实现数据透视和交叉分析的核心函数是pandas.crosstab和pandas.pivot_table。1. pd.crosstab主要用于生成列联表,适用于两个或多个分类变量的频率计数,支持添加总计和归一化百分比;2. pd.pivot_table功能更强大且灵活…

    2025年12月14日 好文分享
    000
  • 如何使用Python操作HBase?分布式数据库

    要使用python操作hbase,主要依赖thrift服务和happybase库。1. 安装并启用hbase thrift服务,使用命令安装thrift并启动hbase thrift;2. 使用happybase连接hbase,通过pip安装后可创建表、插入数据及查询;3. 处理中文或编码问题,写入…

    2025年12月14日 好文分享
    000
  • 如何使用Python开发爬虫?BeautifulSoup解析

    python爬虫开发的核心在于高效抓取和精准解析。1. 安装requests和beautifulsoup4库,用于发送http请求和解析html内容;2. 使用requests获取网页内容,并检查状态码确保请求成功;3. 利用beautifulsoup解析html,提取所需数据如链接和段落文本;4.…

    2025年12月14日 好文分享
    000
  • Python怎样进行时间预测?ARIMA模型实现方法

    python实现arima时间序列预测的步骤包括:1.数据准备并确保时间索引;2.进行adf检验判断平稳性,不平稳则差分处理;3.通过acf/pacf图确定p、d、q参数;4.拟合arima模型;5.预测并可视化结果。arima的p、d、q参数分别通过pacf图截尾位置定p,acf图截尾位置定q,差…

    2025年12月14日 好文分享
    000
  • 怎样用Python处理科学计算?numpy基础指南

    numpy是python中科学计算的基础工具,提供高效的数组操作和数学运算功能。其核心为ndarray对象,可通过列表或元组创建数组,并支持多种内置函数生成数组,如zeros、ones、arange、linspace;数组运算默认逐元素执行,支持统计计算、矩阵乘法,且性能优于原生列表;索引与切片灵活…

    2025年12月14日 好文分享
    000
  • 谷歌地图评论数据抓取:Playwright 问题解析与Selenium方案优化

    本文深入探讨了使用Playwright抓取谷歌地图评论数据时遇到的常见问题,特别是评论数量和平均星级无法完整获取的挑战。通过分析现有代码的潜在缺陷,文章提出并详细阐述了如何利用Selenium WebDriver作为更健壮的替代方案,并提供了关键的实现策略,包括元素定位、等待机制、动态内容处理及XP…

    2025年12月14日
    000
  • Python中如何实现文件压缩?zipfile模块使用

    要使用python压缩文件或文件夹,可通过zipfile模块实现。1. 压缩单个或多个文件时,使用zipfile对象的write()方法,并可选arcname参数控制压缩包内路径和名称;2. 压缩整个文件夹需结合os.walk()遍历目录结构,并逐个添加文件至zip包中,确保保留原始目录结构;3. …

    2025年12月14日 好文分享
    000
  • Python中如何使用Lambda函数?匿名函数应用实例

    lambda函数是python中用于创建匿名函数的一种简洁方式,适用于简单、单次使用的场景。它通过lambda关键字定义,结构为“lambda 参数: 表达式”,返回表达式结果,例如square = lambda x: x ** 2等价于定义单行函数。lambda常见于高阶函数如map()、filt…

    2025年12月14日 好文分享
    000
  • Pandas时间序列插值:避免resample后的线性与NaN结果

    本文探讨了在Pandas中对时间序列数据进行插值时,使用resample后interpolate(method=’time’)可能导致NaN或不理想线性结果的问题。我们将深入分析其原因,并提供策略,以有效处理稀疏时间序列数据,确保插值结果的准确性和合理性,避免常见陷阱。 在处…

    2025年12月14日
    000
  • Google地图评论数据抓取:Playwright问题与Selenium解决方案

    本文旨在解决使用Playwright抓取Google地图评论数据时遇到的不完整问题。核心在于理解动态网页内容加载机制,并提出采用Selenium WebDriver结合显式等待和通用定位策略的解决方案。通过优化元素查找和交互逻辑,确保在页面内容更新后仍能准确、完整地提取数据,提高抓取任务的稳定性和成…

    2025年12月14日
    000
  • Google 地图评论数据抓取:提升稳定性和准确性

    本文旨在解决使用自动化工具抓取 Google 地图评论数据时遇到的不完整或不准确问题,特别是评论平均分和评论数量的抓取遗漏。我们将分析常见原因,并重点介绍如何利用 Selenium 结合动态定位策略和显式等待机制,构建更健壮、更可靠的爬虫,确保数据抓取的完整性和准确性。 1. 问题背景与常见挑战 在…

    2025年12月14日
    000
  • Google Maps数据抓取:提升评论数据抓取鲁棒性的策略与实践

    针对Google Maps评论数据抓取中遇到的不完整问题,本文深入探讨了导致抓取失败的常见原因,特别是动态内容加载和选择器脆弱性。文章提供了使用Playwright等自动化工具进行鲁棒性数据抓取的关键策略,包括优化等待机制、使用更稳定的选择器以及正确处理页面交互,旨在帮助开发者构建高效且可靠的爬虫系…

    2025年12月14日
    000
  • Python多线程环境中上下文内函数调用监控的线程安全实现

    本文探讨了在Python中如何实现上下文内函数调用的监控,并着重解决了多线程环境下的线程安全问题。通过引入threading.local和线程锁,我们设计了一个分离主线程与子线程处理器的方案,确保每个线程的监控上下文独立且数据准确,同时允许主线程的上下文收集所有线程的监控记录,从而实现高效且可靠的函…

    2025年12月14日
    000
  • 怎样用Python处理视频流?OpenCV实时分析

    使用python的opencv库可以高效处理视频流并进行实时分析。1. 安装opencv:通过pip安装opencv-python或完整版。2. 捕获视频流:使用videocapture类读取摄像头或视频文件,并用循环逐帧处理。3. 实时图像处理:包括灰度化、canny边缘检测、高斯模糊等操作。4.…

    2025年12月14日 好文分享
    000
  • 使用 Python Typing 实现泛型类型依赖的组合

    本文旨在解决 Python 中泛型类型依赖组合的问题,通过使用 Protocol 协议定义可索引类型,并结合 TypeVar 约束泛型类型,从而实现对 MutableMapping 和 MutableSequence 等类型的灵活约束。本文将提供代码示例和详细解释,帮助读者理解如何在 Python …

    2025年12月14日
    000
  • 使用 Python Typing 实现泛型类型依赖

    本文介绍了如何使用 Python 的 typing 模块来实现泛型类型之间的依赖关系。通过使用 Protocol 和 TypeVar,我们可以更精确地定义类的类型约束,从而提高代码的可读性和健壮性。本文提供了一个具体的例子,展示了如何将 to 参数的类型与 data 参数的类型绑定在一起,并提供了详…

    2025年12月14日
    000
  • 如何用Python开发API接口?FastAPI教程

    使用python开发api接口可通过fastapi实现,步骤包括:1. 安装fastapi和uvicorn包;2. 创建python文件并编写简单接口示例;3. 通过uvicorn启动服务访问测试;4. 使用路径参数或查询参数接收输入;5. 利用pydantic定义数据模型进行自动校验;6. 自动生…

    2025年12月14日 好文分享
    000
  • 怎样用Python处理地理数据—GeoPandas空间分析

    geopandas是python中用于处理地理数据的强大工具,它扩展了pandas以支持几何对象。1. 可通过pip或conda安装geopandas并读取shapefile文件;2. 支持创建缓冲区、空间交集和合并等操作;3. 提供空间连接功能以便按地理位置关联属性信息;4. 内置绘图功能可用于快…

    2025年12月14日 好文分享
    000

发表回复

登录后才能评论
关注微信