金山打字通怎么更换头像?-金山打字通更换头像的方法

%ignore_a_1%是目前功能最全面的打字练习工具。那么,如何在金山打字通中更换头像呢?下面由小编为大家详细介绍具体操作步骤。

金山打字通怎么更换头像?-金山打字通更换头像的方法

金山打字通更换头像步骤如下:

1、启动金山打字通程序,在主界面右下角找到并点击 齿轮图标(即设置按钮)。

金山打字通怎么更换头像?-金山打字通更换头像的方法

2、接着选择“编辑资料”选项。

吐槽大师 吐槽大师

吐槽大师(Roast Master) – 终极 AI 吐槽生成器,适用于 Instagram,Facebook,Twitter,Threads 和 Linkedin

吐槽大师 94 查看详情 吐槽大师

金山打字通怎么更换头像?-金山打字通更换头像的方法

3、进入后点击“更换头像”,从中挑选你想要设置的新头像,然后点击“保存”即可完成更新。

金山打字通怎么更换头像?-金山打字通更换头像的方法

以上就是金山打字通怎么更换头像?-金山打字通更换头像的方法的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1114754.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月2日 23:32:49
下一篇 2025年12月2日 23:33:42

相关推荐

  • 在 torch.vmap 中高效处理内部张量创建

    理解 torch.vmap 与内部张量创建的挑战 torch.vmap 是 PyTorch 提供的一个强大工具,它允许我们将一个处理单个样本的函数(即非批处理函数)转换为一个能够高效处理一批样本的函数,而无需手动管理批处理维度。这在编写通用代码和加速计算方面非常有用。然而,当被 vmap 向量化的函…

    2025年12月14日
    000
  • Pandas DataFrame中基于条件创建新列的字符串处理技巧

    本文旨在解决pandas dataframe中根据现有列的字符串内容,通过条件逻辑创建新列的问题。针对直接使用python三元运算符处理pandas series可能导致的`valueerror: the truth value of a series is ambiguous`错误,文章详细阐述了…

    2025年12月14日
    000
  • 利用Requests库高效抓取TechCrunch动态加载文章:API分页教程

    本教程详细阐述了如何在不使用selenium或beautifulsoup等浏览器自动化工具的情况下,通过python的requests库抓取techcrunch网站上动态加载的“隐藏”文章。核心方法是识别并利用网站后端的分页api,通过模拟api请求来获取多页文章数据,从而解决“加载更多”按钮限制的…

    2025年12月14日
    000
  • Tkinter/CustomTkinter中隐藏滚动条并保留鼠标滚轮滚动功能

    本文将介绍如何在tkinter和customtkinter的可滚动部件(如ctkscrollableframe)中有效隐藏滚动条,同时确保鼠标滚轮滚动功能保持完整。核心方法是避免创建滚动条部件,因为可滚动组件本身就支持鼠标滚轮事件,或者通过配置参数将内置滚动条宽度设置为零。 引言:隐藏滚动条的场景与…

    2025年12月14日
    000
  • Scikit-learn模型训练前的数据清洗:NaN值处理教程

    本教程旨在解决scikit-learn模型训练时常见的`valueerror: input y contains nan`错误。该错误通常发生在输入数据(特别是目标变量`y`)中包含缺失值(nan)时,因为scikit-learn的大多数估计器默认不支持nan。文章将详细介绍如何使用numpy库创建…

    2025年12月14日
    000
  • Tkinter/CustomTkinter中隐藏滚动条并保留滚动功能

    本文探讨了在Tkinter和CustomTkinter应用中隐藏滚动条同时保持鼠标滚轮滚动功能的实现方法。核心思想是,许多可滚动组件的滚动机制并不依赖于可见的滚动条控件。对于Tkinter,可以直接省略滚动条控件;对于CustomTkinter的`CTkScrollableFrame`,可通过配置参…

    2025年12月14日
    000
  • Pandas DataFrame:为每行动态应用不同的可调用函数

    本教程详细介绍了如何在pandas dataframe中为每一行动态应用不同的可调用函数。当函数本身作为参数存储在dataframe中时,我们面临如何高效执行行级操作的挑战。文章将通过结合相关数据帧并利用`apply(axis=1)`方法,提供一个清晰且易于维护的解决方案,避免使用效率低下的列表推导…

    2025年12月14日
    000
  • Python中字符串到日期时间转换:strptime的常见陷阱与解决方案

    本文深入探讨python中如何将字符串转换为日期时间对象,重点解析使用`time.strptime`或`datetime.strptime`时常遇到的`valueerror`。我们将详细讲解日期时间格式化代码的正确用法,以及如何处理输入字符串中可能存在的额外字符,确保转换过程顺利无误,并提供实用的代…

    2025年12月14日
    000
  • Python多线程安全关闭:避免重写join()方法触发线程退出

    本文探讨了在python中如何安全地关闭一个无限循环运行的线程,特别是响应`keyboardinterrupt`。针对一种通过重写`threading.thread.join()`方法来触发线程退出的方案,文章分析了其潜在问题,并推荐使用分离的显式关闭机制,以提高代码的清晰性、健壮性和可维护性。 在…

    2025年12月14日
    000
  • 解决Python中supervision模块导入错误的完整指南

    本文旨在解决在python计算机视觉项目中,导入`supervision`库的`detections`和`boxannotator`等模块时遇到的`modulenotfounderror`。我们将深入分析导致此类错误的原因,并提供两种核心解决方案:纠正不正确的模块导入路径和确保`supervisio…

    2025年12月14日
    000
  • 使用Python Pandas处理多响应集交叉分析

    本文详细介绍了如何使用python的pandas库对多响应集数据进行交叉分析。针对传统交叉表难以处理多响应问题的挑战,文章通过数据重塑(melt操作)将宽格式的多响应数据转换为长格式,随后利用分组聚合和透视表功能,高效生成所需的多响应交叉表,并探讨了如何计算绝对值和列百分比,为数据分析师提供了实用的…

    2025年12月14日
    000
  • 使用 Pandas 处理多重响应数据交叉表

    本文详细介绍了如何利用 Python Pandas 库高效地处理多重响应(Multiple Response)数据,并生成交叉分析表。核心方法包括使用 `melt` 函数将宽格式数据转换为长格式,再结合 `groupby` 和 `pivot_table` 进行数据聚合与透视,最终实现多重响应变量与目…

    2025年12月14日
    000
  • Xarray数据集高级合并:基于共享坐标的灵活策略

    本教程详细阐述了如何在xarray中合并具有不同维度但共享关键坐标(如`player_id`和`opponent_id`)的两个数据集。文章首先分析了`xr.combine_nested`在非嵌套结构下的局限性,随后提供了一种基于`xr.merge`和坐标选择(`sel`)的解决方案。通过重置索引、…

    2025年12月14日
    000
  • 在SimPy中实现进程的顺序执行

    在simpy离散事件仿真中,确保一个进程完成后再启动另一个进程是常见的需求。本文将深入探讨simpy中进程顺序执行的正确方法,重点讲解如何通过`yield`语句精确控制进程的生命周期,并避免在类初始化方法中过早地创建和启动进程,从而解决进程无法按预期顺序执行或被中断的问题,确保仿真逻辑的准确性。 S…

    2025年12月14日
    000
  • Python中解析JSON字典的常见陷阱与正确实践

    本文旨在指导读者如何在python中正确解析api响应中的json数据,特别是处理`json.loads`转换后的字典类型。文章详细解释了当尝试迭代字典时,为何会出现`typeerror: string indices must be integers, not ‘str’`…

    2025年12月14日
    000
  • 动态毫秒时间转换:Python实现灵活格式化输出

    本文详细介绍了如何在python中将毫秒值转换为可读性强的动态时间格式。通过利用`datetime.timedelta`对象,结合数学运算分离出小时、分钟、秒和毫秒,并巧妙运用字符串的`strip()`和`rstrip()`方法,实现去除前导零和不必要的字符,从而根据时间长短自动调整输出格式,提升用…

    2025年12月14日
    000
  • Python多线程安全关闭:避免重写Thread.join()的陷阱

    本文探讨了在python中安全关闭无限循环线程的最佳实践。针对重写`threading.thread.join()`方法以触发线程退出的做法,文章分析了其潜在问题,并推荐使用独立的停止方法与原始`join()`结合的更健壮模式,以确保线程优雅退出和资源清理,尤其是在处理`keyboardinterr…

    2025年12月14日
    000
  • 解决AJAX购物车多商品更新失效问题:动态ID与事件委托实践

    本教程深入探讨了在AJAX驱动的购物车中,当存在多个商品时,商品数量更新失效的问题及其解决方案。核心在于通过为每个商品元素生成唯一的ID,并结合JavaScript的事件委托机制和`$(this)`上下文,确保AJAX请求能够精确地定位并更新特定商品的显示数量,从而实现无页面刷新的动态购物车体验。 …

    2025年12月14日
    000
  • Pandas处理多重响应数据:生成交叉表的实用教程

    本教程详细介绍了如何使用python pandas库处理包含多重响应(multiple response)类型的数据,并生成清晰的交叉表。通过利用`melt`函数进行数据重塑,结合`groupby`和`pivot_table`进行聚合与透视,我们能够有效地将宽格式的多重响应数据转换为适合分析的长格式…

    2025年12月14日
    000
  • Docker Alpine Python镜像跨架构构建:解决C扩展编译失败问题

    在Docker环境中,使用`python:3.12-alpine`镜像构建Python项目时,可能会遇到跨架构(如从x86到ARM)部署时C扩展库编译失败的问题,典型表现为缺少C编译器(`gcc`)。本文将深入探讨这一现象,分析其根本原因,并提供详细的解决方案,包括直接安装构建工具和采用多阶段构建策…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信