DCloud 发布并开源 uni-ai x,全平台支持的原生 AI 聊天套件

dcloud 正式发布并开源了 uni-ai x,这是一款开源、免费且全平台兼容的原生 ai 聊天工具套件。该项目基于 dcloud 推出的全新跨平台原生框架 uni-app x 构建,全面支持 androidios鸿蒙系统、web 端以及微信小程序,实现“一次开发,多端运行”的高效模式。

据官方介绍,uni-ai x 在功能设计上借鉴了 deepseek 客户端的交互逻辑,并进一步拓展了对更多平台的支持能力,提升跨设备使用体验。

多平台兼容与主题切换
支持 Web/H5、iOS、Android、鸿蒙 App 及微信小程序等多个平台。Web 端采用应式设计,可自适应 PC 大屏与移动设备界面,同时内置浅色与深色两种主题模式,满足不同用户的视觉偏好。

多AI服务商接入与进阶功能
集成多家主流 AI 服务提供商,用户可根据需求自由切换不同的 AI 模型。部分模型还支持“深度思考”和“联网搜索”等增强功能,显著提升对话质量与信息准确性。

会话与消息管理机制
提供完整的会话管理功能,支持多轮对话上下文保持、历史会话查看、快速切换与删除,系统还能根据对话内容自动创建新会话,全面提升使用流畅度。

高级内容渲染能力
AI 回复支持流式输出,带来更自然的交互体验;内容采用原生 Markdown 渲染,内置高性能解析引擎,可完美展示代码高亮、表格、列表等复杂文本结构。

DCloud 发布并开源 uni-ai x,全平台支持的原生 AI 聊天套件

DCloud 发布并开源 uni-ai x,全平台支持的原生 AI 聊天套件

DCloud 发布并开源 uni-ai x,全平台支持的原生 AI 聊天套件

开源项目地址:https://www.php.cn/link/fc37e65a7707ffd0f78dc0f561c25887

源码获取链接:点击下载

以上就是DCloud 发布并开源 uni-ai x,全平台支持的原生 AI 聊天套件的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/115672.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月24日 17:50:02
下一篇 2025年11月24日 18:17:10

相关推荐

  • FastAPI 类型转换:字符串到布尔值的优雅实现

    本文介绍了如何在 FastAPI 应用中,将外部服务传递的字符串参数(如 “true”、”false”、”yes”、”no” 等)自动转换为布尔类型。通过自定义 Pydantic 验证器,我们能够灵活地处…

    2025年12月14日
    000
  • FastAPI/Pydantic中灵活处理字符串到布尔值的智能转换

    本文详细介绍了如何在FastAPI应用中,利用Pydantic的自定义验证器(PlainValidator和Annotated),将多种形式的字符串(如”true”、”false”、”yes”、”no”、…

    2025年12月14日
    000
  • FastAPI 中实现字符串到布尔值的类型转换

    本文将详细介绍如何在 FastAPI 应用中,优雅地实现字符串到布尔值的类型转换。在实际开发中,我们经常需要接收来自外部服务的请求,这些请求可能携带字符串类型的参数,而我们的应用需要将其转换为布尔类型进行处理。例如,一个查询参数可能传递 “true” 或 “fal…

    2025年12月14日
    000
  • Python中如何实现数据分箱?cut与qcut区别解析

    在python中实现数据分箱主要使用pandas的cut和qcut函数。1. cut用于按值区间分箱,可指定等宽或自定义边界,适用于有明确分类标准的数据,如成绩等级;2. qcut用于按数量分箱,基于分位数划分,适合偏态分布数据,确保每组样本量均衡,如收入分层。选择cut时需关注数据的自然边界和均匀…

    2025年12月14日 好文分享
    000
  • Python怎样处理分类数据?category类型转换

    使用category类型可高效处理分类数据。python中pandas的category类型通过整数映射代替字符串,节省内存并提升运算速度,适用于城市、性别等类别数据转换;转换步骤包括导入数据、使用astype(‘category’)进行转换、查看映射关系及编码;与label…

    2025年12月14日 好文分享
    000
  • OpenGL片段着色器输出浮点精度丢失:FBO深度解析与解决方案

    本文旨在解决OpenGL中片段着色器浮点运算结果通过glReadPixels读取时出现精度丢失或全零的问题。核心原因在于默认帧缓冲区的内部格式限制了浮点值的存储精度和范围。教程将详细介绍如何利用帧缓冲对象(FBO)并指定高精度浮点格式(如GL_RGBA32F)作为颜色附件,以实现精确的浮点渲染和读取…

    2025年12月14日
    000
  • 解决Meta Tensor数据复制错误:NotImplementedError

    NotImplementedError: Cannot copy out of meta tensor; no data!错误,通常在使用Hugging Face Transformers库加载和运行大型语言模型时出现,尤其是在GPU显存不足的情况下。该错误表明程序尝试从一个“meta tensor…

    2025年12月14日
    000
  • Python怎样进行音频分析?librosa处理

    librosa 是 python 中用于音频分析的核心库,广泛应用于语音识别、音乐处理等领域。它支持 wav、mp3 等格式,推荐使用 wav 以避免兼容性问题。安装方式为 pip install librosa,并需配合 numpy 和 matplotlib 使用。主要功能包括:1. 加载音频文件…

    2025年12月14日 好文分享
    000
  • 如何使用Python实现自动化办公?pyautogui教程

    使用python的pyautogui库可实现自动化办公,它能模拟鼠标和键盘操作,适用于自动填写表格、定时点击、批量文件处理等任务。1. 安装方法为pip install pyautogui;2. 核心功能包括pyautogui.moveto(x, y)移动鼠标、pyautogui.click()点击…

    2025年12月14日 好文分享
    000
  • 使用 Flet 在 Python 中动态更新 Banner 组件的文本显示

    本文旨在解决 Flet 应用开发中,动态更新 Banner 组件文本显示的问题。 在 Flet 应用中,Banner 组件常用于显示警告、提示或状态信息。 静态的 Banner 组件无法满足应用中需要根据不同条件显示不同信息的场景。 本文将探讨两种解决方案,并提供相应的代码示例。 方法一:直接在条件…

    2025年12月14日
    000
  • 使用 Flet 在 Python Banner 中动态显示文本的教程

    本文介绍了在使用 Flet 构建 Python 应用时,如何在 Banner 组件中动态显示不同的文本信息。通过示例代码,详细讲解了两种实现方案:直接在条件判断语句中创建 Banner 对象,以及使用 UserControl 类封装 Banner 组件。帮助开发者更灵活地控制 Banner 的显示内…

    2025年12月14日
    000
  • 解决OpenGL片段着色器浮点输出精度问题的策略

    本文探讨了在使用PyOpenGL进行图像处理时,从片段着色器读取浮点值出现精度丢失的问题。核心原因在于默认帧缓冲区的内部格式限制了数值精度和范围。教程详细阐述了如何通过创建并使用帧缓冲区对象(FBO),并为其附加高精度浮点纹理,从而在离屏渲染中保留并准确读取片段着色器输出的浮点数据,提供了示例代码和…

    2025年12月14日
    000
  • Python怎样实现图像分割?深度学习应用案例

    图像分割可通过python实现,常用框架pytorch和tensorflow提供预训练模型。常见模型有u-net、fcn、mask r-cnn和deeplab系列,初学者建议从u-net入手。数据准备需带像素级标注的图像及对应mask图,预处理时要统一几何变换并同步增强操作。训练流程包括加载数据、初…

    2025年12月14日 好文分享
    000
  • 如何使用Python操作MongoDB?pymongo查询优化

    使用pymongo操作mongodb并优化查询性能的要点如下:1. 使用mongoclient建立连接,选择数据库和集合;2. 插入数据用insert_one或insert_many;3. 查询用find_one或find,支持条件和排序;4. 更新用update_one或update_many,删…

    2025年12月14日 好文分享
    000
  • OpenGL浮点精度输出:解决glReadPixels数据不准确问题

    在OpenGL中,从片段着色器读取精确的浮点值时,glReadPixels返回零或不准确数据通常是由于默认帧缓冲区的内部格式限制所致。默认帧缓冲区通常为8位归一化格式,无法存储高精度浮点数。解决此问题的关键在于使用帧缓冲区对象(FBO),并将其附加一个内部格式为浮点类型的纹理(如GL_RGBA32F…

    2025年12月14日
    000
  • 如何用Python开发Web应用?Flask快速入门

    使用flask开发web应用的入门步骤如下:1.安装flask并创建应用实例,2.编写基本路由和响应函数,3.运行应用并在浏览器访问测试。接着添加模板支持:4.新建templates目录存放html文件,5.使用render_template渲染页面并传递参数。处理表单功能:6.编写带method属…

    2025年12月14日 好文分享
    000
  • 如何用Python操作XML-RPC?分布式调用方案

    xml-rpc在现代分布式系统中已不主流,但仍有特定适用场景。1. 它适合遗留系统集成、低频简单rpc需求及教学用途;2. 其优点包括协议简单、跨语言支持、防火墙友好和可读性强;3. 缺点为性能差、数据类型受限、同步阻塞及缺乏高级特性;4. 相比restful api的资源导向风格和grpc的高性能…

    2025年12月14日 好文分享
    000
  • 怎样用Python生成二维码?qrcode库安装使用教程

    生成二维码的方法很简单,使用python的qrcode库即可实现。首先需安装qrcode库,命令为pip install qrcode;若需图片或彩色支持,则安装qrcode[pil]。基础方法是通过几行代码创建并保存二维码文件,如指向网址或文本内容。进一步可自定义样式,包括版本号、容错率、边框宽度…

    2025年12月14日 好文分享
    000
  • Python中如何实现定时任务?APScheduler详细配置

    实现python定时任务的核心工具是apscheduler,其使用步骤如下:1. 安装apscheduler;2. 根据应用场景选择调度器,如backgroundscheduler适合后台运行;3. 配置调度器,包括时区、任务存储、执行器及任务默认属性;4. 使用add_job()方法添加任务,并指…

    2025年12月14日 好文分享
    000
  • Python怎样实现数据聚合?groupby方法详解

    groupby是pandas中用于按列分组并进行聚合运算的核心方法。其基本形式为df.groupby(分组依据)[目标列].聚合方法(),例如按“地区”分组后对“销售额”求和:df.groupby(‘地区’)[‘销售额’].sum()。常见聚合方式包括…

    2025年12月14日 好文分享
    000

发表回复

登录后才能评论
关注微信