
分类任务是人工智能中最常见的任务,因为它需要很少的库。我尝试使用在线编译器的资源进行编写,但不了解工作的复杂性。
def rle_decode(mask_rle, shape=(1280, 1918, 1)): ''' mask_rle: run-length as string formated (start length) shape: (height,width) of array to return returns numpy array, 1 - mask, 0 - background ''' img = np.zeros(shape[0]*shape[1], dtype=np.uint8) s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths for lo, hi in zip(starts, ends): img[lo:hi] = 1 img = img.reshape(shape) return img
例如,使用解码掩码0/1的功能,您可以依赖它们的长度。但要生成神经网络的批量数据包,您仍然需要监控当前结果。
def keras_generator(gen_df, batch_size): while true: x_batch = [] y_batch = [] for i in range(batch_size): img_name, mask_rle = gen_df.sample(1).values[0] img = cv2.imread('data/train/{}'.format(img_name)) mask = rle_decode(mask_rle) img = cv2.resize(img, (256, 256)) mask = cv2.resize(mask, (256, 256)) x_batch += [img] y_batch += [mask] x_batch = np.array(x_batch) / 255. y_batch = np.array(y_batch) yield x_batch, np.expand_dims(y_batch, -1)
我喜欢将结果的中间输出与代码进行眼神交流如果结果似乎不太令人满意,我会编辑之前的函数
im_id = 5fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(25, 25))axes[0].imshow(x[im_id]) axes[1].imshow(pred[im_id, ..., 0] > 0.5) plt.show()
结果的输出=保证与编写的代码接触。在这种情况下,不需要异常处理。
以上就是高效的错误处理程序的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1354270.html
微信扫一扫
支付宝扫一扫