
反思/自我反思有点被低估了。如果您的应用程序依赖于提示,我强烈建议您探索这个概念。实施起来并不难,反思技术可以帮助迭代地完善 llm 响应。
from mirascope.core import BaseMessageParam, ResponseModelConfigDict, openaifrom pydantic import BaseModelimport osos.environ["OPENAI_API_KEY"] = ""class Review(BaseModel): issues: list[str] is_good: bool model_config = ResponseModelConfigDict(strict=True)class Story(BaseModel): story: str model_config = ResponseModelConfigDict(strict=True)class StoryWriter(BaseModel): keywords: list[str] generator_history: list[openai.OpenAIMessageParam] = [] @openai.call( "gpt-4o-mini", response_model=Story, json_mode=True, call_params={"temperature": 0.8}, ) def generator(self, query: str) -> list[openai.OpenAIMessageParam]: return [ BaseMessageParam( role="system", content="You are an expert in writing short moral stories for kids below the age of 10.", ), *self.generator_history, ] @openai.call( "gpt-4o-mini", response_model=Review, json_mode=True, call_params={"temperature": 0.1}, ) def reviewer(self, story: str) -> list[openai.OpenAIMessageParam]: return [ BaseMessageParam( role="system", content="You are an expert in reviewing short moral stories for kids below the age of 10, checking whether all the keywords were used effectively and identifying issues related to relevance and ease of understanding", ), BaseMessageParam( role="user", content=f""" Review the given moral story for kids. Check if the story uses all the given keywords. Also check if the story is reasonably realistic, engaging and uses basic vocabulary that is easy to understand for kids below the age of 10. Return the issues. Finally, return True if the moral story is good enough for kids and contains all the keywords. n story: {story} n keywords: {self.keywords}""", ), ] def run(self, steps=3) -> str: query = f"""Generate a moral story for kids, using all the given keywords. Return only the story. {self.keywords}""" self.generator_history += [ BaseMessageParam(role="user", content=query), ] story = "" for _ in range(steps): generator_response = self.generator(query) story = generator_response.story reviewer_response = self.reviewer(story) if reviewer_response.is_good: break query = f"""Use the given feedback to improve the story. Return only the story.""" self.generator_history += [ BaseMessageParam(role="assistant", content=generator_response.story), BaseMessageParam( role="user", content=" ".join(reviewer_response.issues) + " " + query, ), ] print(self.generator_history) return storystory = StoryWriter( keywords=[ "elephant", "boy", "strong", "funny", "good", "ride", "Nikolas", "road", "cap", "car", ]).run()print("==================")print("result", story)
以上就是理解自我反思的简单代码(代理设计模式)的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1354503.html
微信扫一扫
支付宝扫一扫