请我喝杯咖啡☕
*备忘录:
我的帖子解释了 add()。我的帖子解释了 mul()。我的帖子解释了 div()。我的帖子解释了余数()。我的帖子解释了 fmod()。
sub() 可以与零个或多个元素或标量的 0d 或多个 d 张量中的两个或零个或多个元素的 0d 或多个 d 张量与一个标量进行减法,得到为零的 0d 或多个 d 张量或更多元素,如下所示:
*备忘录:
sub() 可以与 torch 或张量一起使用。第一个参数(输入)带有 torch(类型:int、float 或complex 的张量或标量)或使用张量(类型:int、float 或complex 的张量)(必需)。带有 torch 的第二个参数或带有张量的第一个参数是其他(必需类型:张量或 int、float 或complex 标量)。带有 torch 的第三个参数或带有张量的第二个参数是 alpha(可选-默认:1-类型:张量或整数、浮点或复数标量)。 *other 乘以 alpha(输入或张量 -(otherxalpha))。torch 存在 out 参数(可选-默认:无-类型:张量):*备注:必须使用 out=。我的帖子解释了论点。minus() 是 sub() 的别名。
import torchtensor1 = torch.tensor([9, 7, 6])tensor2 = torch.tensor([[4, -4, 3], [-2, 5, -5]])torch.sub(input=tensor1, other=tensor2)tensor1.sub(other=tensor2)torch.sub(input=tensor1, other=tensor2, alpha=1)torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(1))# tensor([[5, 11, 3], [11, 2, 11]])torch.sub(input=tensor1, other=tensor2, alpha=0)torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(0))# tensor([[9, 7, 6], [9, 7, 6]])torch.sub(input=tensor1, other=tensor2, alpha=2)torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(2))# tensor([[1, 15, 0], [13, -3, 16]])torch.sub(input=tensor1, other=tensor2, alpha=-1)torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(-1))# tensor([[13, 3, 9], [7, 12, 1]])torch.sub(input=tensor1, other=tensor2, alpha=-2)torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(-2))# tensor([[17, -1, 12], [5, 17, -4]])torch.sub(input=9, other=tensor2)torch.sub(input=9, other=tensor2, alpha=1)torch.sub(input=9, other=tensor2, alpha=torch.tensor(1))# tensor([[5, 13, 6], [11, 4, 14]])torch.sub(input=tensor1, other=4)torch.sub(input=tensor1, other=4, alpha=1)torch.sub(input=tensor1, other=4, alpha=torch.tensor(1))# tensor([5, 3, 2])torch.sub(input=9, other=4)torch.sub(input=9, other=4, alpha=1)torch.sub(input=9, other=4, alpha=torch.tensor(1))# tensor(5)tensor1 = torch.tensor([9., 7., 6.])tensor2 = torch.tensor([[4., -4., 3.], [-2., 5., -5.]])torch.sub(input=tensor1, other=tensor2)torch.sub(input=tensor1, other=tensor2, alpha=1.)torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(1.))# tensor([[5., 11., 3.], [11., 2., 11.]])torch.sub(input=9., other=tensor2)torch.sub(input=9., other=tensor2, alpha=1.)torch.sub(input=9., other=tensor2, alpha=torch.tensor(1.))# tensor([[5., 13., 6.], [11., 4., 14.]])torch.sub(input=tensor1, other=4)torch.sub(input=tensor1, other=4, alpha=1.)torch.sub(input=tensor1, other=4, alpha=torch.tensor(1.))# tensor([5., 3., 2.])torch.sub(input=9., other=4)torch.sub(input=9., other=4, alpha=1.)torch.sub(input=9., other=4, alpha=torch.tensor(1.))# tensor(5.)tensor1 = torch.tensor([9.+0.j, 7.+0.j, 6.+0.j])tensor2 = torch.tensor([[4.+0.j, -4.+0.j, 3.+0.j], [-2.+0.j, 5.+0.j, -5.+0.j]])torch.sub(input=tensor1, other=tensor2)torch.sub(input=tensor1, other=tensor2, alpha=1.+0.j)torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(1.+0.j))# tensor([[5.+0.j, 11.+0.j, 3.+0.j],# [11.+0.j, 2.+0.j, 11.+0.j]])torch.sub(input=9.+0.j, other=tensor2)torch.sub(input=9.+0.j, other=tensor2, alpha=1.+0.j)torch.sub(input=9.+0.j, other=tensor2, alpha=torch.tensor(1.+0.j))# tensor([[5.+0.j, 13.+0.j, 6.+0.j],# [11.+0.j, 4.+0.j, 14.+0.j]])torch.sub(input=tensor1, other=4.+0.j)torch.sub(input=tensor1, other=4.+0.j, alpha=1.+0.j)torch.sub(input=tensor1, other=4.+0.j, alpha=torch.tensor(1.+0.j))# tensor([5.+0.j, 3.+0.j, 2.+0.j])torch.sub(input=9.+0.j, other=4.+0.j)torch.sub(input=9.+0.j, other=4.+0.j, alpha=1.+0.j)torch.sub(input=9.+0.j, other=4.+0.j, alpha=torch.tensor(1.+0.j))# tensor(5.+0.j)
以上就是PyTorch 中的子项目的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1355205.html
微信扫一扫
支付宝扫一扫