使用 Pandas lreshape 重构宽格式 Excel 表格数据

使用 Pandas lreshape 重构宽格式 Excel 表格数据

本文详细介绍了如何使用 Python Pandas 库中的 lreshape 函数,高效地将具有重复列模式的宽格式 Excel 表格数据重构为规范化的长格式数据。通过具体的代码示例,演示了从内存中的 DataFrame 和直接从 Excel 文件两种场景下的数据转换过程,并探讨了 lreshape 在处理此类特定数据结构时的优势,帮助用户将复杂数据转化为更易于分析和处理的结构。

引言:宽格式数据重构的挑战

在数据处理和分析中,我们经常会遇到一种特殊的“宽格式”数据,其特点是包含大量重复的列组。例如,一个 excel 表格可能包含多组产品id和对应的价格,如 id_m00 和 mprice、id_m01 和 mprice,甚至重复几十次。这种结构虽然在某些场景下便于人工查看,但对于程序化处理和后续的数据分析(如聚合、可视化)而言,却是一种低效且难以操作的格式。我们通常需要将其转换为“长格式”或“规范化”的数据,即每行代表一个独立的观测值,所有相关信息都集中在少数几个关键列中。

考虑以下示例数据结构:

Date id_m00 mprice id_m01 mprice

01.01.2023aa-bb-cc12,05dd-ee-fr8,8002.01.2023aa-dd-ee09,55ff-gg-gg7,50

我们的目标是将其重构为以下长格式:

Date id mprice

01.01.2023aa-bb-cc12,0502.01.2023aa-dd-ee09,5501.01.2023dd-ee-fr8,8002.01.2023ff-gg-gg7,50

传统的 pandas.melt 函数在处理这种带有重复列名(如多个 mprice 列)且需要将特定列组(如 id_mXX 和对应的 mprice)配对转换时,往往会产生额外的空值列或不符合预期的结果。在这种情况下,pandas.lreshape 提供了一个更精准、更强大的解决方案。

Pandas lreshape:高效重塑工具

pandas.lreshape 函数专为处理这种具有固定模式的宽格式数据而设计。它允许你通过一个字典来指定如何将多个旧列组映射到新的列。这个字典的键是新 DataFrame 中的列名,而值是一个列表,包含旧 DataFrame 中对应新列的多个来源列。

它的核心优势在于能够根据预定义的模式,将多个相关的列(例如,id_m00, id_m01, id_m02 和它们各自对应的 mprice 列)聚合到单个新列下,同时保持它们之间的对应关系。

实践示例一:内存中的DataFrame重塑

假设我们已经将 Excel 数据读取到一个 Pandas DataFrame df 中。为了演示,我们先手动创建一个模拟的 DataFrame:

import pandas as pdimport io# 模拟原始宽格式数据data = """Date,id_m00,mprice,id_m01,mprice.101.01.2023,aa-bb-cc,12.05,dd-ee-fr,8.8002.01.2023,aa-dd-ee,09.55,ff-gg-gg,7.50"""df = pd.read_csv(io.StringIO(data), sep=',')# 打印原始DataFrame,注意mprice列在读取时会被自动重命名为mprice.1等print("原始 DataFrame:")print(df)

原始 DataFrame 输出:

原始 DataFrame:         Date    id_m00  mprice    id_m01  mprice.10  01.01.2023  aa-bb-cc   12.05  dd-ee-fr      8.801  02.01.2023  aa-dd-ee    9.55  ff-gg-gg      7.50

可以看到,由于存在重复的列名 mprice,Pandas 在读取时会自动将其重命名为 mprice.1。这是默认行为,反而简化了后续处理。

现在,我们使用 lreshape 来重塑数据:

# 分离出所有的mprice列,并重新命名它们的列索引,以便lreshape能够正确匹配# 注意:这里我们使用了原始数据中mprice被Pandas自动重命名后的列名price_columns = df.filter(like="price").columnsprices = df[price_columns].pipe(lambda x: x.set_axis(range(len(x.columns)), axis=1))# 从原始df中移除这些price列,以便后续concatdf_ids = df.drop(columns=price_columns)# 将处理过的id列和price列重新合并,为lreshape做准备df_combined = pd.concat([df_ids, prices], axis=1)# 使用lreshape进行重塑# 'id' 对应原始DataFrame中所有以 'id_m' 开头的列# 'mprice' 对应我们处理过的所有价格列(其列名已简化为0, 1, 2...)out = pd.lreshape(    df_combined,    {"id": df_combined.filter(like="id_m").columns, "mprice": prices.columns})# 打印重塑后的结果print("n重塑后的 DataFrame:")print(out)

代码解析:

price_columns = df.filter(like=”price”).columns: 筛选出所有包含“price”字符串的列名,包括 mprice 和 mprice.1 等。prices = df[price_columns].pipe(lambda x: x.set_axis(range(len(x.columns)), axis=1)):df[price_columns]:从原始 DataFrame 中选择所有价格相关的列。.pipe(lambda x: …):允许将 DataFrame x 作为参数传递给一个函数,并返回函数的结果。这是一种链式操作的优雅方式。x.set_axis(range(len(x.columns)), axis=1):将这些价格列的列名重命名为简单的整数序列(0, 1, 2…)。这样做是为了让 lreshape 能够更容易地将它们与 id_mXX 列进行匹配,因为 lreshape 会按顺序匹配 id 列表和 mprice 列表中的元素。df_ids = df.drop(columns=price_columns):创建一个只包含 Date 和 id_mXX 列的新 DataFrame。df_combined = pd.concat([df_ids, prices], axis=1):将处理过的 id 列部分和重命名列后的 prices 部分水平拼接起来。pd.lreshape(df_combined, {“id”: df_combined.filter(like=”id_m”).columns, “mprice”: prices.columns}):第一个参数是待重塑的 DataFrame (df_combined)。第二个参数是一个字典,定义了如何重塑:键 “id”:表示新 DataFrame 中将出现的列名。值 df_combined.filter(like=”id_m”).columns:一个列表,包含了原始 DataFrame 中所有以 “id_m” 开头的列名 (id_m00, id_m01 等),它们将被收集到新的 id 列下。键 “mprice”:表示新 DataFrame 中将出现的另一个列名。值 prices.columns:一个列表,包含了我们之前重命名后的价格列名(0, 1 等),它们将被收集到新的 mprice 列下。lreshape 会根据这些列表的顺序进行匹配:id_m00 和 mprice (列0) 配对,id_m01 和 mprice.1 (列1) 配对,以此类推。

重塑后的 DataFrame 输出:

重塑后的 DataFrame:         Date        id  mprice0  01.01.2023  aa-bb-cc   12.051  02.01.2023  aa-dd-ee    9.552  01.01.2023  dd-ee-fr    8.803  02.01.2023  ff-gg-gg    7.50

实践示例二:直接从Excel文件重塑

如果原始数据直接来源于 Excel 文件,并且 Pandas 在读取时已经自动处理了重复列名(例如,mprice, mprice.1, mprice.2…),那么重塑过程可以进一步简化。

假设你的 Excel 文件名为 file.xlsx,并且其内部结构与前面描述的示例一致。

import pandas as pd# 假设 file.xlsx 存在且包含上述示例数据# df = pd.read_excel("file.xlsx") # 实际使用时请取消注释并指定文件路径# 为了演示,我们继续使用之前创建的df,模拟read_excel后的DataFrame# 此时,df 已经包含了 mprice 和 mprice.1 等列print("n模拟从 Excel 读取的 DataFrame:")print(df)# 直接使用lreshape进行重塑out_simplified = pd.lreshape(    df,    {"id": df.filter(like="id_m").columns,     "mprice": df.filter(like="price").columns})# 打印简化后的结果print("n简化重塑后的 DataFrame:")print(out_simplified)

代码解析:

df = pd.read_excel(“file.xlsx”):直接从 Excel 文件读取数据。Pandas 会自动处理重复的列名,如 mprice 会被重命名为 mprice.1, mprice.2 等。pd.lreshape(df, {“id”: df.filter(like=”id_m”).columns, “mprice”: df.filter(like=”price”).columns}):这里不再需要手动分离和重命名 mprice 列。df.filter(like=”id_m”).columns 会获取所有 id_mXX 形式的列名。df.filter(like=”price”).columns 会获取所有 mprice、mprice.1 等价格列名。lreshape 会智能地根据列名的字母数字顺序(例如,mprice 在 mprice.1 之前)进行匹配,将第一个 id_mXX 与第一个 mprice 列配对,第二个 id_mXX 与第二个 mprice 列配对,以此类推。这依赖于 Pandas 读取 Excel 时对重复列名的默认排序行为。

这种方法更简洁,因为它利用了 Pandas 自动处理重复列名的特性。

注意事项与最佳实践

列名模式的一致性: lreshape 的强大之处在于它依赖于列名中的模式。确保你的宽格式数据中,需要重塑的列组(如 id_mXX 和 mprice)具有清晰且一致的命名模式,这样 filter(like=…) 才能准确地选取它们。lreshape 与 melt 的选择:melt 更适用于将“度量”列(values)转换为行,通常伴随着一个或多个“标识符”列(id_vars)。当你的数据中没有明确的重复列组,而是需要将多个值列堆叠起来时,melt 是首选。lreshape 则专长于处理具有固定模式的重复列组。如果你的数据是 (A1, B1), (A2, B2), …, (An, Bn) 这样的结构,并且你想把 A 们合并成一个新列,B 们合并成另一个新列,同时保持 Ai 和 Bi 的对应关系,那么 lreshape 是更优的选择。在本例中,它避免了 melt 可能产生的额外空值列。数据类型: 重塑后,新生成的列(如 id 和 mprice)的数据类型将由其原始来源列的数据类型决定。如果原始列包含混合数据类型,重塑后可能会导致数据类型变为 object。必要时,需要进行类型转换,例如 pd.to_numeric(out[‘mprice’].str.replace(‘,’, ‘.’)) 来处理逗号作为小数分隔符的情况。性能: 对于非常大的数据集,lreshape 的性能通常优于一些手动循环或复杂的多步 merge/concat 操作,因为它在 C 语言层面进行了优化。

总结

pandas.lreshape 是一个在 Python 中处理特定类型宽格式数据重构的强大而高效的工具。它能够精准地将具有重复模式的列组(如 id_mXX 和对应的 mprice)转换为规范化的长格式,极大地简化了数据预处理的流程。通过理解其工作原理和灵活运用 filter(like=…) 等辅助函数,你可以轻松地将复杂的数据结构转化为更利于分析和可视化的形式。

以上就是使用 Pandas lreshape 重构宽格式 Excel 表格数据的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1363112.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 03:13:27
下一篇 2025年12月14日 03:13:42

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    300

发表回复

登录后才能评论
关注微信