如何使用Python加速数据IO—parquet格式优化

使用parquet提升python数据io效率的关键在于其列式存储结构和高效压缩特性。1. parquet按需读取特定列,节省内存和时间;2. 使用pyarrow读写parquet减少序列化开销,推荐snappy或gzip压缩;3. 分区存储按分类维度划分数据,减少查询时的io开销;4. 控制列数量和类型优化性能,如选用int32或字典编码。这些方法显著提升大规模数据处理效率。

如何使用Python加速数据IO—parquet格式优化

数据读写速度往往是数据分析流程中的瓶颈,尤其是面对大规模数据时。Python虽然灵活易用,但默认的IO方式在处理大数据时常常显得力不从心。这时候,选择合适的数据格式和工具就变得非常关键。Parquet格式结合合适的库使用,可以显著提升数据IO效率。

如何使用Python加速数据IO—parquet格式优化

为什么选Parquet?

Parquet是一种列式存储格式,相比CSV或JSON这类行式格式,在读取部分字段时性能优势非常明显。它支持高效压缩、编码方式,并且能很好地与Spark、Pandas等工具集成。如果你只关心某些列的数据,Parquet不会把整行都读进来,节省了大量内存和时间。

常见场景比如分析用户行为日志,你可能只需要“用户ID”、“点击时间”和“页面URL”,而原始数据可能包含几十个字段。这种情况下,Parquet的优势就体现出来了。

立即学习“Python免费学习笔记(深入)”;

如何使用Python加速数据IO—parquet格式优化

使用PyArrow读写Parquet更高效

在Python中,pandas配合pyarrow引擎读写Parquet文件是一个不错的选择。相比默认的fastparquetpyarrow.parquet模块,直接使用pyarrow对象操作可以进一步减少序列化/反序列化的开销。

举个例子:

如何使用Python加速数据IO—parquet格式优化

import pyarrow as paimport pyarrow.parquet as pq# 写入Parquettable = pa.Table.from_pandas(df)pq.write_table(table, 'output.parquet', compression='snappy')# 读取Parquettable = pq.read_table('input.parquet')df = table.to_pandas()

这里有几个细节需要注意:

压缩算法建议使用snappygzip,兼顾压缩率和速度;文件分块(row_group)大小可调整,一般设为几百万行比较合适;如果后续要在Spark中处理,注意Parquet的schema要保持一致。

分区存储提高查询效率

如果数据有明显的分类维度,例如按天、按地区划分,那就可以考虑使用分区(partitioning)。Parquet支持目录结构作为分区键,这样读取特定分区的数据时,就不需要扫描全部文件。

例如,将数据按日期划分为多个子目录:

data/├── date=2024-01-01/│   ├── part-0.parquet├── date=2024-01-02/│   ├── part-0.parquet

读取某一天的数据时,只需指定对应路径即可,大大减少了不必要的IO开销。在使用pyarrow.parquet.read_table时,可以通过设置filesystem参数来访问远程存储(如S3或HDFS)上的分区数据。

小技巧:合理控制列的数量和类型

Parquet是列式存储,所以字段越多,整体写入时间越长。如果你的业务逻辑不需要某些列,可以在写入前做一次筛选,去掉冗余字段。此外,字段类型也会影响存储空间和读取速度,比如使用int32而不是默认的int64,或者将字符串枚举值转成字典编码(dictionary encoding),都可以带来性能提升。

基本上就这些。掌握好Parquet的使用方式,再结合PyArrow等工具,就能让Python在数据IO上跑得更快一些。

以上就是如何使用Python加速数据IO—parquet格式优化的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1364558.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 04:05:56
下一篇 2025年12月14日 04:06:02

相关推荐

  • Python Tkinter 面向对象设计:跨类获取游戏对象坐标的策略

    本教程探讨了在Python Tkinter面向对象游戏开发中,如何解决不同类之间对象坐标获取的问题。文章提供了两种核心策略:通过构造函数传递对象引用,以及通过方法参数传递对象引用。通过详细的代码示例和分析,帮助开发者理解并选择合适的跨对象通信机制,以实现如碰撞检测等功能,提升代码的可维护性和灵活性。…

    好文分享 2025年12月14日
    000
  • 怎样用Python操作Ceph?分布式存储连接

    python操作ceph最常用的方式是使用rados库操作rados层或使用boto3对接rgw的s3兼容api;2. rados库用于底层存储池和对象操作,依赖ceph客户端库并需配置ceph.conf和keyring;3. boto3通过endpoint_url对接ceph rgw,适合构建云原…

    2025年12月14日 好文分享
    000
  • Python怎样实现图像识别?OpenCV深度学习应用教程

    1.数据是图像识别的基础,必须收集大量标注数据;2.根据任务类型选择模型,分类任务用resnet、vgg,检测任务用yolo、ssd,分割任务用u-net、mask r-cnn;3.考虑资源限制,边缘设备优先选用mobilenet、shufflenet等轻量级模型;4.数据不足时采用迁移学习结合预训…

    2025年12月14日 好文分享
    000
  • Python如何实现自动化测试?Selenium框架详细使用教程

    selenium webdriver的安装与基本配置步骤如下:首先,确保已安装python和pip;其次,通过pip install selenium命令安装selenium库;然后,根据目标浏览器下载对应的webdriver(如chromedriver、geckodriver等),并确认其版本与浏…

    2025年12月14日 好文分享
    000
  • Python如何计算移动平均值?rolling函数使用教程

    在python中计算移动平均值最常用的方法是使用pandas库的rolling函数。1. 导入pandas和numpy;2. 创建一个series或dataframe;3. 使用rolling函数并指定window参数来定义窗口大小;4. 调用mean()方法计算移动平均值;5. 可通过设置min_…

    2025年12月14日 好文分享
    000
  • 递归实现西 Syracuse 序列的 Python 函数教程

    Syracuse 序列(也称为冰雹序列或 Collat​​z 序列)是一个有趣的数学概念,它基于一个简单的规则:对于任何正整数 n,如果 n 是偶数,则将其除以 2;如果 n 是奇数,则将其乘以 3 再加 1。重复此过程,直到 n 变为 1。本教程将探讨如何使用 Python 递归函数有效地生成 S…

    2025年12月14日
    000
  • Pygame屏幕滚动与像素环绕问题:高效地生成和管理动态地形

    本文深入探讨Pygame中实现屏幕水平滚动时常见的像素环绕问题,并提供一套有效的解决方案。通过在滚动后填充新暴露的区域,可以避免旧像素的重复显示,实现流畅的无缝滚动效果。文章还将介绍如何利用数据结构管理地形,并探讨玩家与动态地形的交互及碰撞检测策略,旨在帮助开发者构建更专业、更具交互性的游戏场景。 …

    2025年12月14日
    000
  • Pygame中滚动地形的实现与像素缠绕问题的解决

    本文深入探讨了在Pygame中实现游戏背景平滑滚动时,如何避免blit()函数导致的像素缠绕(wrapping)问题。通过分析blit()的工作原理,我们提出并演示了利用背景色填充新暴露区域的解决方案,从而实现无缝的滚动效果。此外,文章还提供了生成新地形的策略,并讨论了玩家与地形进行高效交互(如碰撞…

    2025年12月14日
    000
  • Python中生成与分析集合元素的全排列与组合

    本教程详细阐述了如何在Python中使用itertools模块生成给定元素集合的所有可能排列。文章深入探讨了一种特定的“不相似度概率”计算方法,即衡量一个排列与所有其他排列中,其所含元素集合不相同的比例。通过具体代码示例,帮助读者理解排列生成、概率计算的实现逻辑,并提供相关注意事项。 引言:理解排列…

    2025年12月14日
    000
  • Pygame平滑滚动地形生成:避免blit像素缠绕与实现无缝更新

    本文旨在解决Pygame中Surface.blit()方法在实现滚动效果时可能导致的像素缠绕问题,并提供一种实现平滑、无缝滚动地形的策略。核心在于通过在每次滚动后,使用背景色填充新暴露的区域,而非重复复制旧像素,从而确保新内容能正确绘制。文章还将探讨高效的玩家与地形交互方式,避免低效的像素级检测。 …

    2025年12月14日
    000
  • Python中利用itertools生成全排列并分析其元素组成差异度

    本文详细介绍了如何使用Python的itertools模块生成给定元素集合的所有可能排列(包括不同长度的排列)。在此基础上,教程进一步阐述了一种独特的“概率”计算方法,该方法衡量的是每个排列与其整体排列集合在所含唯一元素上的差异程度。通过实例代码,读者将学习如何高效地生成数据并计算这些差异度,从而深…

    2025年12月14日
    000
  • Python中利用itertools处理排列组合:生成与特定属性概率计算

    本教程详细阐述了如何使用Python的itertools模块生成给定元素集合的所有长度的排列(不含重复元素),并介绍了一种特殊的“元素构成概率”计算方法。该方法衡量的是一个排列与其包含的唯一元素集合在所有生成排列中的非相似性。文章将提供清晰的代码示例、结果解读,并讨论相关注意事项及可能的扩展应用。 …

    2025年12月14日
    000
  • 使用 Python itertools 模块生成排列并计算其字符集差异概率

    本文详细介绍了如何利用 Python 的 itertools 模块生成给定元素集合的所有可能排列(包括不同长度的排列),并阐述了一种特殊的“字符集差异概率”计算方法。教程将通过具体代码示例,指导读者如何高效地获取所有排列,并理解所计算概率的数学含义,同时提供关于处理重复元素和性能考量的专业建议。 在…

    2025年12月14日
    000
  • Pygame中基于像素的形状碰撞检测:理解与高效实践

    本文深入探讨了Pygame中不同颜色形状的像素级碰撞检测。针对pygame.mask.from_threshold在共享表面上使用时的常见误区,文章解释了其失效原因,并提供了一种临时的解决方案。更重要的是,文章详细阐述了实现高效且准确像素级碰撞检测的最佳实践,包括利用边界框进行初步筛选和为每个对象独…

    2025年12月14日
    000
  • SymPy gcdex 函数在求解扩展欧几里得算法及线性丢番图方程中的应用

    本文详细阐述了如何利用 SymPy 库中的 gcdex 函数来解决将两个整数的最大公约数表示为其线性组合的问题,这对于求解线性丢番图方程至关重要。与通用的代数简化函数不同,gcdex 直接提供了满足 ax + by = gcd(a, b) 形式的整数系数 x 和 y,极大地简化了相关数学问题的处理流…

    2025年12月14日
    000
  • Python SymPy gcdex:扩展欧几里得算法与线性组合求解

    本文介绍如何利用 Python SymPy 库中的 gcdex 函数高效求解扩展欧几里得算法。gcdex 函数能够计算两个整数的最大公约数,并同时返回表示该最大公约数为这两个整数线性组合的系数。这对于简化代数表达式、求解线性丢番图方程以及理解数论中的重要概念至关重要,是处理这类数学问题的强大工具。 …

    2025年12月14日
    000
  • 利用 SymPy 的 gcdex 函数求解扩展欧几里得算法及线性丢番图方程

    本文旨在深入探讨如何利用 Python 的 SymPy 库中的 gcdex 函数高效解决扩展欧几里得算法问题。gcdex 函数能够将两个整数的最大公约数表示为它们的线性组合,即 ax + by = gcd(a, b)。这对于求解非齐次线性丢番图方程的特解至关重要,它提供了一种直接且精确的方法来获取方…

    2025年12月14日
    000
  • PyArrow 高效转换单字节 BinaryArray 为 UInt8Array

    本文探讨了在 PyArrow 中将包含单字节数据的 BinaryArray 高效转换为 UInt8Array 的方法。传统的 cast 操作会因数据解析失败而失效,而 Python 循环转换则效率低下。通过深入理解 BinaryArray 的内部缓冲区结构,我们可以利用 UInt8Array.fro…

    2025年12月14日
    000
  • Python “int”对象不可迭代错误:列表迭代的正确方法与去重求和实现

    本文旨在帮助开发者理解并解决Python中常见的“TypeError: ‘int’ object is not iterable”错误,尤其是在尝试迭代整数类型变量时。通过分析错误原因,并结合去重求和的实际案例,提供清晰的解决方案和最佳实践,助你写出更健壮的Python代码。…

    2025年12月14日
    000
  • GAE跨服务任务提交策略:从Python服务调度Node.js任务

    本文详细阐述了在Google App Engine (GAE) 环境中,如何实现从一个服务(如Python)提交任务,并由另一个服务(如Node.js)执行的策略。核心方法包括:利用dispatch.yaml配置基于URL路径的任务路由,使relative_uri直接指向目标服务;或采用间接方式,通…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信