
本文档介绍了如何使用 PySpark 并行处理多个视频文件,并进行人脸识别等视频分析任务。我们将探讨如何利用 Spark 的分布式计算能力,高效地从视频中提取帧,检测人脸,并进行人脸追踪。本文提供了详细的代码示例和步骤,帮助读者理解和应用 PySpark 进行大规模视频处理。
环境配置
首先,确保你的环境中安装了必要的 Python 库和 FFmpeg。
安装 Python 库:
pip install ffmpeg-pythonpip install face-recognitionconda install -c conda-forge opencv
安装 FFmpeg:
确保你的系统上安装了 FFmpeg。具体的安装方法取决于你的操作系统。例如,在 Ubuntu 上可以使用以下命令:
sudo apt-get updatesudo apt-get install ffmpeg
PySpark 代码实现
以下代码展示了如何使用 PySpark 并行读取视频文件,提取帧,并进行人脸检测和追踪。
from pyspark import SQLContext, SparkConf, SparkContextfrom pyspark.sql import SparkSessionimport pyspark.sql.functions as F# 配置 Sparkconf = SparkConf().setAppName("myApp").setMaster("local[40]")spark = SparkSession.builder.master("local[40]").config("spark.driver.memory", "30g").getOrCreate()sc = spark.sparkContextsqlContext = SQLContext(sc)import cv2import osimport uuidimport ffmpegimport subprocessimport numpy as npfrom scipy.optimize import linear_sum_assignmentimport pyspark.sql.functions as Ffrom pyspark.sql import Rowfrom pyspark.sql.types import (StructType, StructField, IntegerType, FloatType, ArrayType, BinaryType, MapType, DoubleType, StringType)from pyspark.sql.window import Windowfrom pyspark.ml.feature import StringIndexerfrom pyspark.sql import Row, DataFrame, SparkSessionimport pathlib# 指定视频文件目录input_dir = "../data/video_files/faces/"pathlist = list(pathlib.Path(input_dir).glob('*.mp4'))pathlist = [Row(str(ele)) for ele in pathlist]# 创建 DataFramecolumn_name = ["video_uri"]df = sqlContext.createDataFrame(data=pathlist, schema=column_name)print("Initial dataframe")df.show(10, truncate=False)# 定义视频元数据 Schemavideo_metadata = StructType([ StructField("width", IntegerType(), False), StructField("height", IntegerType(), False), StructField("num_frames", IntegerType(), False), StructField("duration", FloatType(), False)])# 定义 Shot Schemashots_schema = ArrayType( StructType([ StructField("start", FloatType(), False), StructField("end", FloatType(), False) ]))# 定义 UDF:提取视频元数据@F.udf(returnType=video_metadata)def video_probe(uri): probe = ffmpeg.probe(uri, threads=1) video_stream = next( ( stream for stream in probe["streams"] if stream["codec_type"] == "video" ), None, ) width = int(video_stream["width"]) height = int(video_stream["height"]) num_frames = int(video_stream["nb_frames"]) duration = float(video_stream["duration"]) return (width, height, num_frames, duration)# 定义 UDF:提取视频帧@F.udf(returnType=ArrayType(BinaryType()))def video2images(uri, width, height, sample_rate: int = 5, start: float = 0.0, end: float = -1.0, n_channels: int = 3): """ Uses FFmpeg filters to extract image byte arrays and sampled & localized to a segment of video in time. """ video_data, _ = ( ffmpeg.input(uri, threads=1) .output( "pipe:", format="rawvideo", pix_fmt="rgb24", ss=start, t=end - start, r=1 / sample_rate, ).run(capture_stdout=True)) img_size = height * width * n_channels return [video_data[idx:idx + img_size] for idx in range(0, len(video_data), img_size)]# 添加视频元数据列df = df.withColumn("metadata", video_probe(F.col("video_uri")))print("With Metadata")df.show(10, truncate=False)# 提取视频帧df = df.withColumn("frame", F.explode( video2images(F.col("video_uri"), F.col("metadata.width"), F.col("metadata.height"), F.lit(1), F.lit(0.0), F.lit(5.0))))# 定义人脸检测相关 Schema 和 UDFbox_struct = StructType( [ StructField("xmin", IntegerType(), False), StructField("ymin", IntegerType(), False), StructField("xmax", IntegerType(), False), StructField("ymax", IntegerType(), False) ])def bbox_helper(bbox): top, right, bottom, left = bbox bbox = [top, left, bottom, right] return list(map(lambda x: max(x, 0), bbox))@F.udf(returnType=ArrayType(box_struct))def face_detector(img_data, width=1920, height=1080, n_channels=3): img = np.frombuffer(img_data, np.uint8).reshape(height, width, n_channels) faces = face_recognition.face_locations(img) return [bbox_helper(f) for f in faces]# 进行人脸检测df = df.withColumn("faces", face_detector(F.col("frame"), F.col("metadata.width"), F.col("metadata.height")))# 定义人脸追踪相关 Schema 和 UDFannot_schema = ArrayType( StructType( [ StructField("bbox", box_struct, False), StructField("tracker_id", StringType(), False), ] ))def bbox_iou(b1, b2): L = list(zip(b1, b2)) left, top = np.max(L, axis=1)[:2] right, bottom = np.min(L, axis=1)[2:] if right < left or bottom = threshold ): return {0: 0} sim_mat = np.array( [ [ similarity(tracked[bbox_col], detection[bbox_col]) for tracked in trackers ] for detection in detections ], dtype=np.float32, ) matched_idx = linear_sum_assignment(-sim_mat) matches = [] for m in matched_idx: try: if sim_mat[m[0], m[1]] >= threshold: matches.append(m.reshape(1, 2)) except: pass if len(matches) == 0: return {} else: matches = np.concatenate(matches, axis=0, dtype=int) rows, cols = zip(*np.where(matches)) idx_map = {cols[idx]: rows[idx] for idx in range(len(rows))} return idx_map@F.udf(returnType=ArrayType(box_struct))def OFMotionModel(frame, prev_frame, bboxes, height, width): if not prev_frame: prev_frame = frame gray = cv2.cvtColor(np.frombuffer(frame, np.uint8).reshape(height, width, 3), cv2.COLOR_BGR2GRAY) prev_gray = cv2.cvtColor(np.frombuffer(prev_frame, np.uint8).reshape(height, width, 3), cv2.COLOR_BGR2GRAY) inst = cv2.DISOpticalFlow.create(cv2.DISOPTICAL_FLOW_PRESET_MEDIUM) inst.setUseSpatialPropagation(False) flow = inst.calc(prev_gray, gray, None) h, w = flow.shape[:2] shifted_boxes = [] for box in bboxes: xmin, ymin, xmax, ymax = box avg_y = np.mean(flow[int(ymin):int(ymax), int(xmin):int(xmax), 0]) avg_x = np.mean(flow[int(ymin):int(ymax), int(xmin):int(xmax), 1]) shifted_boxes.append( {"xmin": int(max(0, xmin + avg_x)), "ymin": int(max(0, ymin + avg_y)), "xmax": int(min(w, xmax + avg_x)), "ymax": int(min(h, ymax + avg_y))}) return shifted_boxesdef match_annotations(iterator, segment_id="video_uri", id_col="tracker_id"): """ Used by mapPartitions to iterate over the small chunks of our hierarchically-organized data. """ matched_annots = [] for idx, data in enumerate(iterator): data = data[1] if not idx: old_row = {idx: uuid.uuid4() for idx in range(len(data[1]))} old_row[segment_id] = data[0] pass annots = [] curr_row = {segment_id: data[0]} if old_row[segment_id] != curr_row[segment_id]: old_row = {} if data[2] is not None: for ky, vl in data[2].items(): detection = data[1][vl].asDict() detection[id_col] = old_row.get(ky, uuid.uuid4()) curr_row[vl] = detection[id_col] annots.append(Row(**detection)) matched_annots.append(annots) old_row = curr_row return matched_annotsdef track_detections(df, segment_id="video_uri", frames="frame", detections="faces", optical_flow=True): id_col = "tracker_id" frame_window = Window().orderBy(frames) value_window = Window().orderBy("value") annot_window = Window.partitionBy(segment_id).orderBy(segment_id, frames) indexer = StringIndexer(inputCol=segment_id, outputCol="vidIndex") # adjust detections w/ optical flow if optical_flow: df = ( df.withColumn("prev_frames", F.lag(F.col(frames)).over(annot_window)) .withColumn(detections, OFMotionModel(F.col(frames), F.col("prev_frames"), F.col(detections), F.col("metadata.height"), F.col("metadata.width"))) ) df = ( df.select(segment_id, frames, detections) .withColumn("bbox", F.explode(detections)) .withColumn(id_col, F.lit("")) .withColumn("trackables", F.struct([F.col("bbox"), F.col(id_col)])) .groupBy(segment_id, frames, detections) .agg(F.collect_list("trackables").alias("trackables")) .withColumn( "old_trackables", F.lag(F.col("trackables")).over(annot_window) ) .withColumn( "matched", tracker_match(F.col("trackables"), F.col("old_trackables")), ) .withColumn("frame_index", F.row_number().over(frame_window)) ) df = ( indexer.fit(df) .transform(df) .withColumn("vidIndex", F.col("vidIndex").cast(StringType())) ) unique_ids = df.select("vidIndex").distinct().count() matched = ( df.select("vidIndex", segment_id, "trackables", "matched") .rdd.map(lambda x: (x[0], x[1:])) .partitionBy(unique_ids, lambda x: int(x[0])) .mapPartitions(match_annotations) ) matched_annotations = sqlContext.createDataFrame(matched, annot_schema).withColumn("value_index", F.row_number().over( value_window)) return ( df.join(matched_annotations, F.col("value_index") == F.col("frame_index")) .withColumnRenamed("value", "trackers_matched") .withColumn("tracked", F.explode(F.col("trackers_matched"))) .select( segment_id, frames, detections, F.col("tracked.{}".format("bbox")).alias("bbox"), F.col("tracked.{}".format(id_col)).alias(id_col), ) .withColumn(id_col, F.sha2(F.concat(F.col(segment_id), F.col(id_col)), 256)) .withColumn("tracked_detections", F.struct([F.col("bbox"), F.col(id_col)])) .groupBy(segment_id, frames, detections) .agg(F.collect_list("tracked_detections").alias("tracked_detections")) .orderBy(segment_id, frames, detections) )# 定义 DetectionTracker Transformerfrom pyspark import keyword_onlyfrom pyspark.ml.pipeline import Transformerfrom pyspark.ml.param.shared import HasInputCol, HasOutputCol, Paramclass DetectionTracker(Transformer, HasInputCol, HasOutputCol): """Detect and track.""" @keyword_only def __init__(self, inputCol=None, outputCol=None, framesCol=None, detectionsCol=None, optical_flow=None): """Initialize.""" super(DetectionTracker, self).__init__() self.framesCol = Param(self, "framesCol", "Column containing frames.") self.detectionsCol = Param(self, "detectionsCol", "Column containing detections.") self.optical_flow = Param(self, "optical_flow", "Use optical flow for tracker correction. Default is False") self._setDefault(framesCol="frame", detectionsCol="faces", optical_flow=False) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only def setParams(self, inputCol=None, outputCol=None, framesCol=None, detectionsCol=None, optical_flow=None): """Get params.""" kwargs = self._input_kwargs return self._set(**kwargs) def setFramesCol(self, value): """Set framesCol.""" return self._set(framesCol=value) def getFramesCol(self): """Get framesCol.""" return self.getOrDefault(self.framesCol) def setDetectionsCol(self, value): """Set detectionsCol.""" return self._set(detectionsCol=value) def getDetectionsCol(self): """Get detectionsCol.""" return self.getOrDefault(self.detectionsCol) def setOpticalflow(self, value): """Set optical_flow.""" return self._set(optical_flow=value) def getOpticalflow(self): """Get optical_flow.""" return self.getOrDefault(self.optical_flow) def _transform(self, dataframe): """Do transformation.""" input_col = self.getInputCol() output_col = self.getOutputCol() frames_col = self.getFramesCol() detections_col = self.getDetectionsCol() optical_flow = self.getOpticalflow() id_col = "tracker_id" frame_window = Window().orderBy(frames_col) value_window = Window().orderBy("value") annot_window = Window.partitionBy(input_col).orderBy(input_col, frames_col) indexer = StringIndexer(inputCol=input_col, outputCol="vidIndex") # adjust detections w/ optical flow if optical_flow: dataframe = ( dataframe.withColumn("prev_frames", F.lag(F.col(frames_col)).over(annot_window)) .withColumn(detections_col, OFMotionModel(F.col(frames_col), F.col("prev_frames"), F.col(detections_col))) ) dataframe = ( dataframe.select(input_col, frames_col, detections_col) .withColumn("bbox", F.explode(detections_col)) .withColumn(id_col, F.lit("")) .withColumn("trackables", F.struct([F.col("bbox"), F.col(id_col)])) .groupBy(input_col, frames_col, detections_col) .agg(F.collect_list("trackables").alias("trackables")) .withColumn( "old_trackables", F.lag(F.col("trackables")).over(annot_window) ) .withColumn( "matched", tracker_match(F.col("trackables"), F.col("old_trackables")), ) .withColumn("frame_index", F.row_number().over(frame_window)) ) dataframe = ( indexer.fit(dataframe) .transform(dataframe) .withColumn("vidIndex", F.col("vidIndex").cast(StringType())) ) unique_ids = dataframe.select("vidIndex").distinct().count() matched = ( dataframe.select("vidIndex", input_col, "trackables", "matched") .rdd.map(lambda x: (x[0], x[1:])) .partitionBy(unique_ids, lambda x: int(x[0])) .mapPartitions(match_annotations) ) matched_annotations = sqlContext.createDataFrame(matched, annot_schema).withColumn("value_index", F.row_number().over( value_window)) return ( dataframe.join(matched_annotations, F.col("value_index") == F.col("frame_index")) .withColumnRenamed("value", "trackers_matched") .withColumn("tracked", F.explode(F.col("trackers_matched"))) .select( input_col, frames_col, detections_col, F.col("tracked.{}".format("bbox")).alias("bbox"), F.col("tracked.{}".format(id_col)).alias(id_col), ) .withColumn(id_col, F.sha2(F.concat(F.col(input_col), F.col(id_col)), 256)) .withColumn(output_col, F.struct([F.col("bbox"), F.col(id_col)])) .groupBy(input_col, frames_col, detections_col) .agg(F.collect_list(output_col).alias(output_col)) .orderBy(input_col, frames_col, detections_col) )# 使用 DetectionTrackerdetectTracker = DetectionTracker(inputCol="video_uri", outputCol="tracked_detections")print(type(detectTracker))detectTracker.transform(df)final = track_detections(df)print("Final dataframe")final.select("tracked_detections").show(100, truncate=False)
代码解释
Spark 配置:
配置 SparkSession,设置 App 名称和 Master 节点。增加 spark.driver.memory 配置,避免内存不足。
视频元数据提取:
使用 FFmpeg 提取视频的宽度、高度、帧数和时长。video_probe UDF 用于获取视频元数据。
视频帧提取:
使用 FFmpeg 提取视频帧,并将其转换为图像字节数组。video2images UDF 用于提取视频帧。
人脸检测:
使用 face_recognition 库检测视频帧中的人脸。face_detector UDF 用于检测人脸,并返回人脸的边界框。
人脸追踪:
使用光流法(Optical Flow)和匈牙利算法(Hungarian Algorithm)进行人脸追踪。OFMotionModel UDF 用于使用光流法预测下一帧的人脸位置。tracker_match UDF 用于匹配相邻帧中的人脸。match_annotations 函数用于在分区中匹配人脸。track_detections 函数用于整合人脸检测和追踪结果。
DetectionTracker Transformer:
将人脸检测和追踪逻辑封装成一个 Transformer,方便在 Spark ML Pipeline 中使用。
注意事项
内存配置: 视频处理通常需要大量的内存。请根据实际情况调整 spark.driver.memory 和 spark.executor.memory 参数。FFmpeg 安装: 确保 FFmpeg 安装正确,并且可以在系统中访问。视频文件路径: 确保视频文件路径正确,并且 Spark 可以访问这些文件。UDF 性能: UDF 的性能可能不如 Spark 内置函数。在实际应用中,尽量使用 Spark 内置函数优化性能。并行度: 根据集群的规模和视频文件的大小,调整 Spark 的并行度,以充分利用集群的计算资源。
总结
本文档提供了一个使用 PySpark 并行处理视频文件的完整示例,包括视频元数据提取、视频帧提取、人脸检测和追踪。通过使用 Spark 的分布式计算能力,我们可以高效地处理大规模的视频数据,并进行各种视频分析任务。在实际应用中,可以根据具体需求调整代码,例如修改人脸检测算法、调整光流法参数等。
以上就是并行处理视频流:使用 PySpark 进行大规模视频分析的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1368200.html
微信扫一扫
支付宝扫一扫