使用 Pandas Rolling 函数高效生成基于状态列的 Flag

使用 pandas rolling 函数高效生成基于状态列的 flag

本文旨在提供一种使用 Pandas 的 groupby.rolling 函数,根据连续期间的状态列高效生成 Flag 的方法。针对大数据集,该方法避免了低效的循环,显著提升了性能。文章将详细介绍该函数的用法,并提供示例代码,帮助读者理解如何在实际应用中运用此方法。

在处理时间序列数据时,经常需要根据一段时间内的状态来标记数据。例如,我们需要根据未来或过去12个月内的状态,来标记当前状态。如果使用循环遍历的方法,在大数据集上效率会非常低。Pandas 提供的 groupby.rolling 函数可以高效地解决这类问题。

groupby.rolling 函数介绍

groupby.rolling 函数是 Pandas 中一个强大的工具,它允许我们在分组数据上进行滚动窗口计算。其基本用法如下:

df.groupby('grouping_column')['column_to_roll'].rolling(window=window_size, min_periods=min_periods, ...).aggregate_function()

grouping_column: 用于分组的列名。column_to_roll: 需要进行滚动计算的列名。window: 窗口大小,即滚动计算的期间长度。min_periods: 窗口内至少需要多少个非缺失值才能进行计算。aggregate_function: 聚合函数,如 sum, max, min, mean 等。

示例:基于未来 12 个月状态生成 Flag

假设我们有如下 DataFrame,需要根据未来 12 个月内 status 列是否出现 1 来生成 Flag 列:

import pandas as pdimport numpy as npdata = {'ID': ['A'] * 13,        'Period': ['2020-10-28', '2020-11-28', '2020-12-28', '2021-01-28', '2021-02-28', '2021-03-28',                   '2021-04-28', '2021-05-28', '2021-06-28', '2021-07-28', '2021-08-28', '2021-09-28',                   '2021-10-28'],        'status': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]}df = pd.DataFrame(data)print(df)

使用 groupby.rolling 函数的实现代码如下:

df['Flag'] = (df      .assign(Period=pd.to_datetime(df['Period']).dt.to_period('M'))      [::-1]      .groupby('ID').rolling(12, on='Period', min_periods=1)      ['status'].max()[::-1].to_numpy())print(df)

代码解释:

df.assign(Period=pd.to_datetime(df[‘Period’]).dt.to_period(‘M’)): 将 ‘Period’ 列转换为 Pandas Period 类型,方便进行滚动计算。[::-1]: 将 DataFrame 反转,因为我们需要考虑未来 12 个月的数据。groupby(‘ID’).rolling(12, on=’Period’, min_periods=1): 按 ‘ID’ 分组,并在 ‘Period’ 列上进行滚动计算,窗口大小为 12 个月,最小周期为 1。[‘status’].max(): 计算窗口内 status 列的最大值,如果窗口内存在 1,则最大值为 1,否则为 0。[::-1].to_numpy(): 再次反转结果,使其与原始 DataFrame 的顺序一致,并转换为 NumPy 数组。

示例:基于过去 12 个月状态生成 Flag

如果需要根据过去 12 个月内 status 列是否出现 1 来生成 Flag 列,可以使用如下代码:

df['Flag'] = (df      .assign(Period=pd.to_datetime(df['Period']).dt.to_period('M'))      .set_index('Period')      [::-1]      .groupby('ID')['status']      .transform(lambda g: g.rolling(12, min_periods=1)                            .max().shift(fill_value=0)                 )      .to_numpy()[::-1])print(df)

代码解释:

df.assign(Period=pd.to_datetime(df[‘Period’]).dt.to_period(‘M’)): 将 ‘Period’ 列转换为 Pandas Period 类型,方便进行滚动计算。.set_index(‘Period’): 将’Period’列设置为索引。[::-1]: 将 DataFrame 反转,因为我们需要考虑过去 12 个月的数据。groupby(‘ID’)[‘status’].transform(lambda g: g.rolling(12, min_periods=1).max().shift(fill_value=0)): 按 ‘ID’ 分组,并在 ‘status’ 列上进行滚动计算,窗口大小为 12 个月,最小周期为 1。使用transform方法将滚动计算的结果应用到每一行。 .shift(fill_value=0)将结果向下移动一位,并将第一行的值填充为0,保证了只考虑过去的period。to_numpy()[::-1]: 转换为 NumPy 数组并再次反转结果,使其与原始 DataFrame 的顺序一致。

注意事项

确保 Period 列的格式正确,可以使用 pd.to_datetime 函数将其转换为日期类型。根据实际需求调整窗口大小 window 和最小周期 min_periods。groupby.rolling 函数在处理大数据集时效率很高,但仍需根据实际情况进行性能测试。

总结

使用 Pandas 的 groupby.rolling 函数可以高效地根据连续期间的状态列生成 Flag,避免了低效的循环,显著提升了性能。通过本文的介绍和示例代码,相信读者能够掌握该函数的用法,并在实际应用中灵活运用。这种方法尤其适用于处理具有时间序列特征的大数据集,能够显著提高数据处理的效率。

以上就是使用 Pandas Rolling 函数高效生成基于状态列的 Flag的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1368248.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 08:37:15
下一篇 2025年12月14日 08:37:30

相关推荐

  • 获取调用库函数的主文件名

    本文将介绍如何在Python库函数中获取调用该函数的主文件名。通过sys.argv[0]获取正在运行脚本的路径,并利用ntpath.basename提取文件名,实现动态获取调用者文件名,从而避免依赖源码浏览。 在开发Python项目时,有时需要在库函数中获取调用该函数的脚本文件名。例如,你可能希望根…

    2025年12月14日
    000
  • 使用 Selenium 提取 Twitter 视频 URL

    本教程旨在指导开发者如何使用 Python 和 Selenium 自动化提取 Twitter 推文中嵌入的视频 URL。我们将通过一个实际示例,演示如何利用 Selenium 模拟用户行为,定位视频元素,并提取其对应的直播链接。本教程将提供详细的代码示例和解释,帮助你快速掌握该技术。 Seleniu…

    2025年12月14日
    000
  • 使用 Pandas 滚动窗口高效生成状态标志

    本文介绍如何使用 Pandas 的 groupby.rolling 函数,基于连续时间段的状态列高效地生成标志。针对大数据集,避免低效的循环,提供两种方案:一种考虑未来12个月的状态,另一种仅考虑过去12个月的状态。通过代码示例,详细展示了如何实现这两种标志生成逻辑,并提供了相应的输出结果。 利用 …

    2025年12月14日
    000
  • Pandas Series间距离矩阵的构建与高效计算

    本文深入探讨了在Pandas DataFrame中高效构建两个Series之间距离矩阵的多种方法。我们将详细介绍如何利用NumPy的广播机制实现高性能的元素级运算,以及使用Pandas Series的apply方法进行灵活但可能效率较低的计算。教程将提供具体的代码示例,并着重分析不同方法的性能特点与…

    2025年12月14日
    000
  • DuckDB扩展手动加载指南:解决HTTPFS扩展加载失败问题

    本教程详细指导用户如何正确手动安装和加载DuckDB扩展,特别是针对HTTPFS扩展加载失败的问题。文章揭示了常见的错误,如“签名无效”和“非有效Win32应用程序”,并强调了手动安装时必须先对下载的.gz扩展文件进行解压缩。通过提供正确的操作步骤和Python代码示例,确保用户能够顺利加载所需扩展…

    2025年12月14日
    000
  • 在Pandas DataFrame中高效计算距离矩阵

    本文探讨了如何在Pandas Series之间高效计算距离矩阵(或任意自定义的元素级操作结果)。我们将重点介绍使用NumPy广播机制的矢量化方法,该方法在性能上远超基于循环的Pandas apply方法。通过实例代码,读者将理解如何利用NumPy的强大功能来优化数据处理,同时也会了解apply方法在…

    2025年12月14日
    000
  • 在Pandas中高效计算Series间的距离矩阵

    本教程旨在深入探讨如何在Pandas中高效地构建两个Series之间的距离矩阵,即计算一个Series中的每个元素与另一个Series中所有元素的“距离”(或通过任意函数计算得到的值),并将结果组织成一个DataFrame。我们将详细阐述两种核心方法:基于NumPy广播机制的向量化方案,以及Pand…

    2025年12月14日
    000
  • 解密后的XLS文件读取错误:UnicodeDecodeError问题解决

    本文旨在解决使用msoffcrypto解密带密码保护的XLS文件后,使用pandas读取时遇到的UnicodeDecodeError问题。文章将提供一种可行的解决方案,并讨论可能导致问题的其他原因,例如密码错误或文件损坏,帮助读者成功读取解密后的Excel数据。 在使用msoffcrypto库解密带…

    2025年12月14日
    000
  • 查看Python版本如何在虚拟环境未激活时查看 查看Python版本的环境未激活查询技巧​

    找到虚拟环境的Python解释器路径后执行版本查询命令即可查看版本。通常虚拟环境位于项目目录下的venv、.venv等文件夹中,进入bin(Linux/macOS)或Scripts(Windows)目录可找到解释器,运行./myenv/bin/python –version或.myenv…

    2025年12月14日
    000
  • DuckDB扩展手动安装与加载指南:解决HTTPFS加载失败及常见错误

    本文详细阐述了DuckDB扩展手动安装与加载过程中可能遇到的问题及解决方案,特别是针对HTTPFS扩展加载失败的情况。文章指出,手动下载的扩展文件(如.gz格式)需先解压缩,并提供了处理未签名扩展及常见加载错误的实用方法,旨在帮助用户顺利配置DuckDB环境,确保扩展功能正常使用。 在某些受限环境中…

    2025年12月14日
    000
  • 在Langchain中跨链维护状态:变量传递与状态管理教程

    本文档介绍了如何在Langchain中跨多个链维护状态,即如何在链之间传递变量。我们将通过一个实际示例,演示如何使用itemgetter在链之间共享变量,确保在后续链中正确引用先前链中的变量。本文将深入探讨Langchain中的状态管理机制,并提供详细的代码示例和解释,帮助开发者更好地理解和应用La…

    2025年12月14日
    000
  • Python函数如何写一个简单的加密字符串函数 Python函数字符串加密基础功能的编写教程​

    凯撒密码通过固定位移实现加密,仅处理英文字母,非字母字符保留不变;2. xor加密利用异或运算的可逆性,同一函数和密钥可完成加解密;3. 这些方法适用于非敏感数据混淆,如配置文件或游戏存档,但不具备抗攻击能力;4. 解密凯撒密码需反向位移,xor则直接复用加密函数与密钥;5. 简单加密不应用于敏感信…

    2025年12月14日
    000
  • DuckDB扩展手动加载指南:解决“Win32应用”与签名错误

    本文详细阐述了在DuckDB中手动加载扩展(如httpfs)时遇到的常见问题,特别是“Win32应用”错误和签名验证失败。核心解决方案在于,从官方源下载的.gz压缩扩展文件必须先进行解压缩,获取到原始的.duckdb_extension文件后才能正确加载。文章提供了具体操作步骤和注意事项,确保用户能…

    2025年12月14日
    000
  • DuckDB扩展手动安装与加载指南:避免Gzip压缩陷阱

    本文旨在解决DuckDB扩展手动加载时遇到的常见问题,特别是当扩展文件以Gzip格式压缩时导致的加载失败。我们将详细介绍如何正确下载、解压并加载DuckDB扩展,尤其是在需要启用非签名扩展的受限环境中,避免出现“无效Win32应用程序”等错误,确保扩展能够顺利运行。 1. 理解DuckDB扩展的加载…

    2025年12月14日
    000
  • DuckDB扩展手动加载与常见问题解决方案

    本文详细阐述了在受限环境下手动安装和加载DuckDB扩展(如httpfs)的正确方法。核心在于,从DuckDB官网下载的扩展文件(通常为.duckdb_extension.gz格式)必须先手动解压缩为.duckdb_extension文件,才能被DuckDB正确加载。文章分析了常见的加载失败原因,如…

    2025年12月14日
    000
  • LangChain表达式语言:多链间变量传递与状态管理

    本文深入探讨了LangChain表达式语言中跨链变量传递与状态管理的挑战与解决方案。当构建复杂的LLM应用时,常需将原始输入变量与前一链的输出结果一同传递给后续链。文章通过具体代码示例,详细阐述了如何利用operator.itemgetter高效、明确地实现这一目标,确保原始上下文信息在多链流程中得…

    2025年12月14日
    000
  • 查看Python版本如何在Windows命令提示符中操作 查看Python版本的CMD使用技巧​

    要查看Windows中Python版本,直接在CMD输入python –version或python -V即可。若提示命令不存在,需检查是否将Python安装路径添加到系统PATH环境变量,可通过手动添加路径或重新安装并勾选“Add Python to PATH”解决。当系统存在多个Py…

    2025年12月14日
    000
  • Python怎样操作Neo4j图数据库?py2neo

    使用py2neo操作neo4j时常见的性能瓶颈包括:1. 大量单点操作导致频繁的网络往返和事务开销,应通过批处理或合并cypher语句来减少请求次数;2. cypher查询未使用索引或执行全图扫描,需建立索引并利用explain/profile优化查询计划;3. 缺乏事务管理,应将批量操作封装在显式…

    2025年12月14日
    000
  • Python怎样实现数据离散化?cut/qcut方法对比

    数据离散化在python中主要通过pandas的cut和qcut实现,1. cut适用于等宽或自定义区间分箱,适合数据分布均匀或有明确业务边界的情况;2. qcut用于等频分箱,确保每箱数据量相近,适合偏态分布或需按相对位置分层的场景;选择时需考虑数据分布、业务需求、可解释性及异常值敏感度,实际操作…

    2025年12月14日
    000
  • Python代码规范与类型提示最佳实践:解决Linter警告的实用指南

    本文旨在帮助Python开发者更好地理解和应用类型提示,以及如何通过遵循Linter的建议来提升代码质量。文章将深入探讨函数返回None时的类型标注、str与AnyStr的选择,以及修改代码以满足Linter要求的最佳实践,并提供具体示例,助你编写更健壮、更易维护的Python代码。 类型提示与Li…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信