Python 多进程:AsyncResult 与回调函数,哪种方式更优?

python 多进程:asyncresult 与回调函数,哪种方式更优?

本文深入探讨了 Python 多进程 multiprocessing.Pool 中 apply_async() 方法的两种结果获取方式:AsyncResult.get() 和回调函数。分析了它们在处理大量任务时的优缺点,包括结果顺序、异常处理、内存占用等方面,并提供了相应的代码示例和注意事项,帮助开发者选择更适合自身场景的方法。

在使用 Python 的 multiprocessing.Pool 进行并行计算时,apply_async() 方法允许异步地提交任务。获取任务结果有两种主要方式:通过 AsyncResult 对象的 get() 方法,或者使用回调函数。这两种方法各有优劣,选择哪一种取决于具体的应用场景。

AsyncResult.get() 方法

这种方式将每个异步任务的 AsyncResult 对象存储在一个列表中,然后在所有任务提交后,通过循环调用 get() 方法来获取结果。

import multiprocessingdef func(x):    # 模拟耗时操作    return x * xdef process_data(pool, n):    results = []    for i in range(n):        result = pool.apply_async(func, (i,))        results.append(result)    pool.close()    pool.join()    data = [r.get() for r in results]    return dataif __name__ == '__main__':    pool = multiprocessing.Pool(processes=4)    n = 10    data = process_data(pool, n)    print(data)

优点:

立即学习“Python免费学习笔记(深入)”;

代码结构清晰,易于理解和维护。不需要使用全局变量来存储结果。

缺点:

必须等待所有任务完成后才能获取结果,无法实时处理。如果任务数量巨大,AsyncResult 对象列表可能会占用大量内存。如果某个任务抛出异常,只有在调用 get() 方法时才能捕获,可能会延迟异常处理。

异常处理:

如果 func 函数可能抛出异常,需要使用 try…except 块来处理。

    data = []    for r in results:        try:            data.append(r.get())        except Exception as e:            # 处理异常            print(f"Error: {e}")            data.append(None) # 或者其他合适的默认值

回调函数

这种方式在提交任务时指定一个回调函数,当任务完成后,该函数会被自动调用,并将结果作为参数传递给它。

import multiprocessingdata = []  # 使用全局变量存储结果def func(x):    # 模拟耗时操作    return x * xdef save_result(result):    global data    data.append(result)def process_data(pool, n):    for i in range(n):        pool.apply_async(func, (i,), callback=save_result)    pool.close()    pool.join()if __name__ == '__main__':    pool = multiprocessing.Pool(processes=4)    n = 10    process_data(pool, n)    print(data)

优点:

立即学习“Python免费学习笔记(深入)”;

可以实时处理任务结果,无需等待所有任务完成。可以更早地发现和处理异常。在某些情况下,可以减少内存占用。

缺点:

需要使用全局变量来存储结果,可能导致代码可读性和可维护性下降。结果的顺序可能与任务提交的顺序不一致,需要额外的处理来保证顺序。代码结构相对复杂。

结果顺序:

回调函数的执行顺序不一定与任务提交的顺序相同。如果需要保证结果顺序,可以使用以下方法:

预分配结果列表: 在提交任务之前,创建一个长度为 n 的列表,并用 None 填充。传递索引参数: 将任务的索引作为参数传递给 func 函数,并在回调函数中使用该索引来更新结果列表。

import multiprocessingdata = [None] * 10 # 预分配结果列表def func(x, index):    # 模拟耗时操作    return x * x, indexdef save_result(result):    global data    value, index = result    data[index] = valuedef process_data(pool, n):    for i in range(n):        pool.apply_async(func, (i, i), callback=save_result)    pool.close()    pool.join()if __name__ == '__main__':    pool = multiprocessing.Pool(processes=4)    n = 10    process_data(pool, n)    print(data)

异常处理:

使用回调函数时,可以通过 error_callback 参数来处理异常。

def handle_exception(e):    print(f"Error: {e}")def process_data(pool, n):    for i in range(n):        pool.apply_async(func, (i,), callback=save_result, error_callback=handle_exception)    pool.close()    pool.join()

总结

特性 AsyncResult.get() 回调函数

结果处理批量处理实时处理代码结构简单清晰相对复杂内存占用可能较高可能较低结果顺序保持提交顺序默认不保证顺序异常处理延迟处理实时处理全局变量不需要需要

选择哪种方式取决于具体的应用场景。

如果需要保证结果顺序,并且可以接受延迟处理,AsyncResult.get() 方法可能更合适。如果需要实时处理结果,并且可以接受代码复杂度的增加,回调函数可能更合适。如果任务数量巨大,并且内存资源有限,可以考虑使用回调函数,并结合预分配结果列表的方式来保证结果顺序。在需要及时响应错误的情况下,回调函数结合 error_callback 可以提供更灵活的异常处理机制。

最终的选择应该基于对项目需求的全面评估和对两种方法的优缺点的权衡。

以上就是Python 多进程:AsyncResult 与回调函数,哪种方式更优?的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1368422.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 08:46:15
下一篇 2025年12月14日 08:46:33

相关推荐

  • Python中调用API并正确处理响应:以Mouser API为例

    本教程详细介绍了如何在Python中正确调用外部API,特别是针对Mouser API的请求方法和数据结构问题。通过修正API版本、请求类型和请求体,确保API请求成功并能有效解析响应数据,提升API集成效率。 在现代软件开发中,与第三方api进行交互是常见的需求。python的requests库是…

    好文分享 2025年12月14日
    000
  • 使用 Bash 函数在执行 Python 脚本前自动运行 Black

    该教程将详细介绍如何创建一个 Bash 函数,该函数可以在执行 Python 脚本之前自动运行 Black 代码格式化工具。通过这种方式,开发者可以确保代码风格的一致性,并减少因代码格式问题导致的运行时错误。 在日常 Python 开发中,保持代码风格一致性至关重要。虽然有很多工具可以帮助我们实现这…

    2025年12月14日
    000
  • 使用 Tapkey API 获取所有者列表时遇到 401 错误:解决方案

    引言 本文档旨在帮助开发者解决在使用 Tapkey REST API 获取所有者列表时遇到的 401 Unauthorized 错误。通过检查 OAuth 凭据、权限范围以及 Authorization Header 的正确设置,提供一个清晰的解决方案,确保成功获取所需数据。本文档提供详细的代码示例…

    2025年12月14日
    000
  • 使用 Tapkey API 获取 Owner 列表时出现 401 错误:解决方案

    本文档旨在帮助开发者解决在使用 Tapkey REST API 获取 Owner 列表时遇到的 401 Unauthorized 错误。该错误通常是由于 Authorization Header 设置不正确导致的。本文将提供详细的解决方案,包括正确的 Header 设置方式,并提供示例代码,确保开发…

    2025年12月14日
    000
  • 并行计算中AsyncResult与回调函数的选择:性能与异常处理

    本文深入探讨了Python多进程库multiprocessing.Pool中apply_async()方法的使用,对比了通过AsyncResult对象获取结果和使用回调函数处理结果两种方式的优劣。重点分析了在大规模任务提交场景下的内存占用、结果顺序以及异常处理等方面的差异,并提供了相应的代码示例和注…

    2025年12月14日
    000
  • 利用 Altair 和 Jupyter Notebook 实现交互式坐标轴控制

    本文将探讨如何在 Jupyter Notebook 中,利用 Altair 和 ipywidgets 实现更高级的交互式数据可视化,即通过滑块控件动态控制 Altair 图表的坐标轴参数。Altair 5.1 版本引入的 JupyterChart 功能为我们提供了实现这一目标的可能性。 使用 Jup…

    2025年12月14日
    000
  • 如何准确查看Spark Core版本:解决PySpark版本混淆问题

    本文旨在解决在PySpark环境中难以准确获取底层Spark Core版本的问题。针对pyspark.__version__等常见方法无法反映真实Spark Core版本的情况,文章详细介绍了两种可靠的查询方法:利用Spark SQL的version()函数(适用于Spark 3.0及更高版本)以及…

    2025年12月14日
    000
  • 获取Spark Core版本:分布式环境下精准识别与验证

    在分布式Spark环境中,PySpark客户端版本与实际运行的Spark Core版本可能存在差异。本文旨在提供可靠的方法,帮助用户准确识别集群上部署的Spark Core版本,而非仅限于客户端的PySpark版本信息。核心策略是利用Spark SQL的version()函数或PySpark 3.5…

    2025年12月14日
    000
  • 如何准确获取Spark Core集群版本

    本文旨在解决在Spark环境中,尤其是当PySpark客户端版本与集群上部署的Spark Core版本不一致时,如何准确获取Spark Core实际运行版本的问题。通过介绍传统方法可能存在的局限性,并重点阐述利用Spark SQL的version()函数以及PySpark中对应的pyspark.sq…

    2025年12月14日
    000
  • Python函数中传递包含特殊字符(如点号)的关键字参数

    Python函数在接受关键字参数时,要求参数名必须是合法的Python标识符,这意味着不能直接使用包含点号等特殊字符的名称。本文将详细介绍如何通过字典解包(**kwargs)的方式,优雅地将带有特殊字符的字符串作为参数键传递给函数,并结合示例代码展示其用法,确保参数传递的灵活性和代码的健壮性。 理解…

    2025年12月14日
    000
  • Python函数关键字参数命名限制与包含特殊字符键的解决方案

    本文探讨Python函数在处理关键字参数时,当参数名包含点号等非法字符时遇到的语法错误。我们将深入解析这一限制的原因,并提供一种利用字典解包(**操作符)的有效策略,以成功将任意字符串作为键传递给接受**kwargs的函数,从而克服命名约束。 理解Python关键字参数的命名规则 在Python中,…

    2025年12月14日
    000
  • Python函数参数深度解析:解决带点号关键字参数传递问题

    本文深入探讨了在Python中向函数传递包含点号(.)的关键字参数的有效方法。由于Python的关键字参数必须是合法的标识符,直接使用带点号的名称会导致语法错误。教程将详细介绍如何利用字典解包(**kwargs)这一强大特性,以字符串形式传递这类特殊键值对,并演示如何将其与其他标准关键字参数结合使用…

    2025年12月14日
    000
  • Python函数中传递包含特殊字符的关键字参数

    本文探讨了在Python函数中,当关键字参数名称包含点号(.)等非法字符时如何正确传递数据。由于Python的标识符命名规则限制,直接传递此类参数会导致语法错误。解决方案是利用字典解包(**kwargs)机制,将包含特殊字符的键作为字典的键,从而实现灵活的参数传递,并可与其他标准关键字参数结合使用。…

    2025年12月14日
    000
  • Python函数参数传递:处理包含点号的关键字

    在Python函数调用中,直接使用包含点号(.)的字符串作为关键字参数会导致语法错误,因为关键字参数名必须是合法的Python标识符。本文将详细阐述这一限制的原因,并提供一个通用的解决方案:通过字典解包(**kwargs)的方式传递这类特殊命名的参数,从而允许函数接收任意字符串作为键,有效解决了参数…

    2025年12月14日
    000
  • 使用Python requests库正确调用Mouser API教程

    本教程详细介绍了如何使用Python的requests库正确调用Mouser API。针对常见的请求方法误用(GET与POST)、API版本路径不匹配以及请求参数格式不正确等问题,本文提供了基于官方文档的解决方案。通过示例代码,读者将学习如何构建正确的API请求URL、设置请求头以及传递JSON格式…

    2025年12月14日
    000
  • Python中正确调用RESTful API:以Mouser API为例

    本文旨在指导读者如何使用Python的requests库正确调用RESTful API,并以Mouser API为例,详细解析了从GET到POST方法、URL参数与请求体(Payload)结构的关键转变。通过对比分析错误与正确的API调用方式,强调了仔细阅读API文档的重要性,并提供了可运行的代码示…

    2025年12月14日
    000
  • Python集成Mouser API:正确处理POST请求与JSON数据

    本文旨在解决Python调用Mouser API时常见的请求方法与数据结构问题。通过详细解析Mouser API的官方文档要求,我们将修正初始代码中GET请求的误用,转而采用POST方法,并构建符合规范的JSON请求体。本教程将提供一个完整的、可运行的Python示例,并深入探讨API版本号、请求参…

    2025年12月14日
    000
  • Python API请求指南:正确获取与解析API响应

    本教程详细指导如何在Python中正确发起API请求并处理响应。针对常见的API调用问题,特别是POST请求与参数构造,文章强调了查阅官方API文档的重要性,并提供了基于requests库的修正代码示例,帮助开发者高效获取并解析API数据。 在现代软件开发中,与第三方API进行交互是常见需求。Pyt…

    2025年12月14日
    000
  • PyTorch中冻结中间层参数的深度解析与实践

    本教程深入探讨了在PyTorch中冻结神经网络特定中间层参数的两种常见方法:torch.no_grad()上下文管理器和设置参数的requires_grad = False属性。文章通过代码示例详细阐述了两种方法的原理、效果及适用场景,并明确指出requires_grad = False是实现精确中…

    2025年12月14日
    000
  • PyTorch中精确冻结中间层参数的策略与实践

    本教程深入探讨了在PyTorch模型训练中冻结特定中间层参数的两种常见方法:使用torch.no_grad()上下文管理器和直接设置参数的requires_grad属性。通过实验对比,我们揭示了torch.no_grad()可能对上游层产生意外影响,而requires_grad = False是实现…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信