在 Databricks AutoML 中指定特征列的方法

在 databricks automl 中指定特征列的方法

本文档介绍了在使用 Databricks AutoML 与 Feature Store 结合时,如何正确指定特征列。 当直接将 Feature Store lookups 传递给 databricks.automl.regress 或 databricks.automl.classify 函数时,可能会遇到问题,特别是当你只想使用 Feature Table 中的部分特征时。本文提供了一种解决方案,通过使用 fe.create_training_set 和 training_set.load_df() 来创建训练数据集,从而允许你在 AutoML 中指定要使用的特征列。

使用 Feature Store 创建训练数据集并应用于 AutoML

在使用 Databricks AutoML 时,如果你的数据依赖于 Feature Store,并且你希望精确控制哪些特征列被用于训练,直接将 Feature Store lookups 传递给 AutoML 函数可能无法满足需求。这是因为 AutoML 的 regress 和 classify 函数在直接使用 feature_store_lookups 参数时,可能无法让你指定要包含的特征名称,并且排除列的功能可能不适用于 Feature Store 的列。

解决此问题的推荐方法是首先使用 Feature Store 的 API 创建一个训练数据集,然后将该数据集加载到 DataFrame 中,最后将该 DataFrame 传递给 AutoML 函数。

以下步骤展示了如何实现这一目标:

定义 Feature Lookups:

首先,你需要定义一个 FeatureLookup 对象的列表,用于指定要从 Feature Store 中查找的特征。 这些对象指定了 Feature Table 的名称、查找键以及要包含的特征名称。

from databricks import feature_store as fefrom databricks.feature_store import FeatureLookupmodel_feature_lookups = [    FeatureLookup(      table_name="lakehouse_in_action.favorita_forecasting.oil_10d_lag_ft",      lookup_key="date",      feature_names="lag10_oil_price"    ),    FeatureLookup(      table_name="lakehouse_in_action.favorita_forecasting.store_holidays_ft",      lookup_key=["date","store_nbr"]    ),    FeatureLookup(      table_name="lakehouse_in_action.favorita_forecasting.stores_ft",      lookup_key="store_nbr",      feature_names=["cluster","store_type"]    ),]

请注意,feature_names 参数允许你指定要从每个 Feature Table 中包含的特定特征。

创建训练数据集:

使用 fe.create_training_set 函数创建一个训练数据集。 此函数接受原始数据 DataFrame、FeatureLookup 对象的列表以及目标列的名称。

training_set = fe.create_training_set(    df=raw_data,    feature_lookups=model_feature_lookups,    label=label_name,)

加载 DataFrame:

使用 training_set.load_df() 方法将训练数据集加载到 DataFrame 中。 此 DataFrame 包含原始数据以及从 Feature Store 中查找的特征。

training_df = training_set.load_df()

运行 AutoML:

现在,你可以将加载的 DataFrame 传递给 databricks.automl.regress 或 databricks.automl.classify 函数。 你还可以使用 exclude_cols 参数排除不需要的列。

automl_data = training_df.filter("date > '2016-12-31'") # Optional: Filter data for faster executionsummary = databricks.automl.regress(automl_data,                                    target_col=label_name,                                    time_col="date",                                    timeout_minutes=6,                                    exclude_cols=['id']                                    )

注意: exclude_cols 参数用于排除原始数据中的列,而不是 Feature Store 中查找的列。

示例代码

以下是完整的示例代码,展示了如何使用 Feature Store 创建训练数据集并将其应用于 AutoML:

from databricks import feature_store as fefrom databricks.feature_store import FeatureLookup# 1. Define Feature Lookupsmodel_feature_lookups = [    FeatureLookup(      table_name="lakehouse_in_action.favorita_forecasting.oil_10d_lag_ft",      lookup_key="date",      feature_names="lag10_oil_price"    ),    FeatureLookup(      table_name="lakehouse_in_action.favorita_forecasting.store_holidays_ft",      lookup_key=["date","store_nbr"]    ),    FeatureLookup(      table_name="lakehouse_in_action.favorita_forecasting.stores_ft",      lookup_key="store_nbr",      feature_names=["cluster","store_type"]    ),]# 2. Create Training Datasettraining_set = fe.create_training_set(    df=raw_data,    feature_lookups=model_feature_lookups,    label=label_name,)# 3. Load DataFrametraining_df = training_set.load_df()# 4. Run AutoMLautoml_data = training_df.filter("date > '2016-12-31'") # Optional: Filter data for faster executionsummary = databricks.automl.regress(automl_data,                                    target_col=label_name,                                    time_col="date",                                    timeout_minutes=6,                                    exclude_cols=['id']                                    )

注意事项

确保你已正确安装和配置了 Databricks Feature Store SDK。在 FeatureLookup 对象中,lookup_key 必须与原始数据 DataFrame 和 Feature Table 中的键列名称匹配。feature_names 参数允许你选择要从 Feature Table 中包含的特定特征。 如果省略 feature_names,则将包含 Feature Table 中的所有特征。exclude_cols 参数仅用于排除原始数据中的列,而不是 Feature Store 中查找的列。根据数据量和计算资源,调整 timeout_minutes 参数以获得最佳 AutoML 运行时间。

总结

通过使用 Feature Store API 创建训练数据集,你可以更灵活地控制哪些特征被用于 Databricks AutoML 训练。 这种方法允许你指定要包含的特征名称,并避免因包含不需要的列而导致的问题。 按照本文档中的步骤,你可以有效地将 Feature Store 集成到你的 AutoML 工作流程中,并获得更好的模型性能。

以上就是在 Databricks AutoML 中指定特征列的方法的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1368842.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 09:07:50
下一篇 2025年12月14日 09:08:09

相关推荐

  • 精确控制Python数字格式化:定长、高精度与无’e’科学计数法

    本文深入探讨了在Python中如何实现对数字的定制化格式输出,以满足特定场景下对字符长度、显示精度以及科学计数法表示(去除’e’)的严格要求。通过利用Python强大的格式化字符串迷你语言,我们构建了一个高效且简洁的解决方案,确保数字在不同长度限制下仍能保持最高可读性和数值准…

    2025年12月14日
    000
  • Python数值格式化:在固定长度内实现高精度无’e’表示

    本文提供一个Python函数,用于将数值格式化为指定长度的字符串,同时确保最高的数值精度,并在必要时使用科学计数法,但避免使用字母”e”来表示指数。 函数实现 以下是一个Python函数,它可以根据给定的格式要求(”short”或”long…

    2025年12月14日
    000
  • 将数字格式化为指定长度的字符串,避免使用科学计数法

    本文介绍如何使用 Python 将数字格式化为指定长度(8 或 16 字符)的字符串,同时避免使用科学计数法中的 “e” 符号。通过自定义函数,结合 Python 的格式化规范,可以灵活地控制数字的显示精度和格式,满足特定需求,例如在 Nastran 文件中表示数值。 在工程…

    2025年12月14日
    000
  • Python如何调用API接口_PythonAPI请求方法详解

    Python调用API接口需使用requests库发送HTTP请求,构造URL、方法、头和体,发送后处理响应数据。1.导入requests库;2.构建GET或POST请求,携带参数或数据;3.设置Headers传递认证信息;4.发送请求并检查状态码;5.用response.json()解析JSON数…

    2025年12月14日
    000
  • Python中单元测试怎么写 Python中单元测试指南

    单元测试通过验证代码各部分的正确性来确保质量,Python中常用unittest和pytest框架,unittest适合大型项目,pytest更灵活适用于小型项目;最佳实践包括测试驱动开发、高覆盖率、测试独立性与可读性、及时更新测试及使用mocking隔离外部依赖,如用unittest.mock模拟…

    2025年12月14日
    000
  • Python如何操作字符串_Python字符串处理方法合集

    Python字符串操作基于其不可变性,任何修改都会创建新字符串。使用单、双或三引号创建字符串,+操作符可拼接但效率低,推荐”.join()方法提升性能。f-string(Python 3.6+)是首选格式化方式,支持嵌入表达式和格式控制,优于str.format()和%格式化。字符串支持…

    2025年12月14日
    000
  • Python Tkinter Canvas图像显示异常:深入解析与解决方案

    本文深入探讨了Python Tkinter Canvas图像无法正常显示的问题,尤其关注因函数参数传递不当导致路径变量被错误赋值为False这一常见但隐蔽的逻辑错误。教程将指导读者理解Tkinter图像显示机制、识别并解决此类问题,并提供调试技巧与最佳实践,确保图像能够稳定、正确地在画布上呈现。 T…

    2025年12月14日
    000
  • Tkinter Canvas 图片无法显示问题排查与解决

    在使用 Python Tkinter 的 Canvas 组件显示图片时,开发者可能会遇到图片无法显示的问题。这通常是由于图片对象的作用域、图片路径错误或垃圾回收机制等原因造成的。本文将详细分析这些原因,并提供相应的解决方案,确保图片能够正确显示在 Canvas 上。 问题分析 Tkinter 的 C…

    2025年12月14日
    000
  • 解决Tkinter Canvas图像不显示问题:深入理解变量作用域与参数传递

    本教程探讨Tkinter Canvas图像不显示的常见问题,特别是由于函数参数传递错误导致的图像路径失效。文章将详细分析问题根源,提供代码示例,并指导读者如何正确管理变量作用域,确保图像资源被正确引用和显示,避免图像因变量值为False而无法加载,从而有效解决图像显示异常。 Tkinter Canv…

    2025年12月14日
    000
  • 针对ASP.NET网站动态表格的高效数据抓取教程:摆脱Selenium的限制

    本教程详细介绍了如何通过模拟HTTP请求,从具有.NET后端、包含动态生成表格的ASP.NET网站中高效提取数据。针对传统Selenium或直接BeautifulSoup抓取失败的问题,我们演示了如何利用requests库获取动态视图状态参数,构建并发送POST请求,最终结合pandas库精准解析并…

    2025年12月14日
    000
  • Python如何发送邮件_Python发送邮件实现方法一览

    使用smtplib和email库可实现Python邮件发送,先导入相关库,设置发件人、收件人、主题及内容,通过SMTP服务器登录并发送邮件,注意处理异常;发送HTML邮件需将MIMEText类型设为’html’;带附件邮件需用MIMEMultipart和MIMEBase构建;…

    2025年12月14日
    000
  • 高效更新JSON数据:Discord.py应用中的库存管理优化实践

    本文旨在指导开发者如何高效地更新JSON数据,特别是在Discord.py应用中管理用户库存等场景。通过分析常见的低效文件操作模式,提出并演示了一种优化方案:一次性加载JSON数据到内存,完成所有修改后,再一次性将更新后的数据写回文件,从而显著提升性能并确保数据一致性。 在开发discord机器人或…

    2025年12月14日
    000
  • PyTerrier初始化时SSL证书验证失败的解决方案与注意事项

    本教程旨在解决PyTerrier启动时可能遇到的SSL: CERTIFICATE_VERIFY_FAILED证书验证失败错误。通过临时禁用SSL证书验证,可以快速绕过此问题,从而顺利初始化PyTerrier。文章将详细介绍此解决方案的实现方式,并重点强调其潜在的安全风险及使用时需注意的事项。 问题概…

    2025年12月14日
    000
  • 高效更新JSON数据:Discord机器人中批量参数添加与文件I/O优化实践

    本文详细阐述了在Discord机器人应用中,如何高效地向现有JSON数据(如用户库存)批量添加新参数。通过优化文件读取和写入策略,避免了低效的循环内文件操作,实现了数据在内存中一次性修改和一次性持久化,显著提升了更新效率和系统性能,确保数据更新的准确性和可靠性。 1. JSON数据更新场景与挑战 在…

    2025年12月14日
    000
  • Python如何打包项目_Python项目打包发布步骤解析

    答案:Python项目打包是将代码、依赖和元数据封装为可分发安装包的过程,通过setuptools配置setup.py文件,生成源码包和轮子包,经twine发布至PyPI。需注意项目结构规范、正确使用find_packages()、精确管理依赖版本、设置long_description_conten…

    2025年12月14日
    000
  • Python如何遍历字典_Python字典遍历的常用方法汇总

    遍历字典的核心是通过keys()、values()和items()方法分别访问键、值或键值对。直接for循环默认遍历键,等价于使用keys();若需访问值,应使用values();而同时获取键和值时,items()结合元组解包是最常用且高效的方式。选择哪种方式取决于具体需求:仅处理键时用keys()…

    2025年12月14日
    000
  • Discord.py应用:JSON文件参数批量添加与优化

    本教程将指导您如何在Discord.py应用中高效地更新JSON文件,为现有用户数据批量添加新参数。针对常见的文件I/O效率问题,我们将介绍一种优化策略:先将JSON数据一次性加载到内存,完成所有数据修改,最后将更新后的完整数据一次性写入文件,从而避免重复的文件读写操作,显著提升性能和数据更新的可靠…

    2025年12月14日
    000
  • Discord.py:高效更新JSON文件,添加新参数

    本文档旨在指导Discord.py开发者如何高效地更新JSON文件,向已存在的JSON数据中添加新的参数。通过优化文件读写操作,避免在循环中频繁写入,从而提升代码效率。文章将提供示例代码,并详细解释其工作原理,帮助开发者更好地理解和应用。 在开发Discord Bot时,经常需要读写JSON文件来存…

    2025年12月14日
    000
  • Python中高效更新JSON文件:以Discord Bot库存系统为例

    本教程将指导如何在Python应用中高效地更新JSON文件,特别是针对批量修改场景。通过优化文件I/O操作,我们将学习如何一次性加载数据、在内存中完成所有修改,然后一次性写回文件,从而显著提升性能并避免常见的效率陷阱。 在开发discord机器人或其他需要频繁与数据文件交互的应用程序时,对json数…

    2025年12月14日
    000
  • Python中命令行参数怎么解析 Python中命令行参数处理

    Python中推荐使用argparse模块解析命令行参数,因其支持类型转换、默认值、帮助信息和子命令,相比sys.argv更强大且用户友好,能自动处理错误和生成文档,适用于复杂命令行工具开发。 Python中解析命令行参数,最直接的方式是使用内置的 sys.argv 列表,它包含了脚本名和所有传递的…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信