优化Pandas数据处理:告别慢速循环,拥抱高效Merge

优化pandas数据处理:告别慢速循环,拥抱高效merge

本教程探讨了Pandas中常见的性能瓶颈:使用itertuples()和apply(axis=1)进行行级数据处理和数据查找。通过一个实际案例,我们将展示如何利用Pandas的向量化操作和merge()函数,将慢速的循环查找和数据整合过程,转换为高效、简洁且可扩展的数据处理方案,显著提升代码性能和可读性。

理解Pandas中的性能瓶颈:行级操作的陷阱

Pandas是一个强大的数据分析库,但其性能表现很大程度上取决于如何使用它。当处理大型数据集时,常见的性能瓶颈往往出现在尝试对DataFrame进行行级迭代和操作时。虽然Python的for循环和Pandas的apply(axis=1)提供了灵活性,但它们通常不是最高效的解决方案,因为它们本质上是基于Python解释器的循环,而非Pandas底层C语言实现的优化操作。

考虑以下场景:我们需要根据df_RoadSegments中的起点ID(RoadSegmentOrigin)从df_Stops中查找对应的经纬度信息,并将其整合到df_RoadSegments中。原始的实现方式可能如下:

import pandas as pdimport io# 模拟数据加载road_segments_data = """RoadSegmentOrigin,RoadSegmentDest,trip_id,planned_durationAREI2,JD4,107_1_D_1,32JD4,PNG4,107_1_D_1,55"""stops_data = """stop_id,stop_code,stop_name,stop_lat,stop_lon,zone_id,stop_urlAREI2,AREI2,AREIAS,41.1591084955401,-8.55577748652738,PRT3,http://www.stcp.pt/pt/viajar/paragens/?t=detalhe&paragem=AREI2JD4,JD4,JOÃO DE DEUS,41.1578666104126,-8.55802717966919,PRT3,http://www.stcp.pt/pt/viajar/paragens/?t=detalhe&paragem=JD4PNG4,PNG4,PORTO NORTE,41.1600000000000,-8.56000000000000,PRT3,http://www.stcp.pt/pt/viajar/paragens/?t=detalhe&paragem=PNG4"""df_RoadSegments = pd.read_csv(io.StringIO(road_segments_data))df_Stops = pd.read_csv(io.StringIO(stops_data))# 辅助函数:根据stop_id查找经纬度def getstopscoordinates(df_stops, stop_id):    df_stop_id = df_stops.loc[df_stops["stop_id"] == stop_id]    if not df_stop_id.empty:        stop_id_lat = str(df_stop_id["stop_lat"].values[0])        stop_id_lon = str(df_stop_id["stop_lon"].values[0])        stop_id_coord = stop_id_lat + "," + stop_id_lon        return stop_id_coord    return None # 如果找不到,返回None# 原始的慢速处理方式# 注意:此代码段仅用于说明问题,不建议在实际生产环境中使用# for row in df_RoadSegments.head(2).itertuples():#     # 这里的apply(axis=1)会在df_RoadSegments的每一行上重复调用getstopscoordinates#     # 并且getstopscoordinates内部又进行了DataFrame查询,效率极低#     df_RoadSegments["OriginCoordinates"] = df_RoadSegments.apply(#         lambda x: getstopscoordinates(df_Stops, x["RoadSegmentOrigin"]), axis=1#     )# print(df_RoadSegments)

上述代码的性能问题在于:

外部循环与内部apply(axis=1)的冗余: 即使外部只迭代df_RoadSegments.head(2),内部的df_RoadSegments.apply(…)却会针对df_RoadSegments的所有行执行getstopscoordinates函数。这意味着在每次外部循环迭代中,整个df_RoadSegments都会被重新计算OriginCoordinates列。apply(axis=1)的低效: apply(axis=1)本质上是在DataFrame的每一行上执行一个Python函数。对于大型DataFrame,这会产生大量的Python函数调用开销,远不如Pandas的向量化操作高效。getstopscoordinates内部的DataFrame查询: 在getstopscoordinates函数内部,df_stops.loc[df_stops[“stop_id”] == stop_id] 再次进行了一次DataFrame的条件查询,这在每次函数调用时都会发生,进一步加剧了性能问题。

解决方案:利用merge()进行高效数据整合

Pandas提供了强大的向量化操作,能够显著提升数据处理效率。对于这种跨DataFrame的数据查找和整合需求,merge()函数是远比循环和apply(axis=1)更优的选择。

核心思想是:

预处理查找表: 将需要查找的数据(df_Stops)预先处理成目标格式。使用merge()进行高效连接: 利用共同的键(stop_id)将两个DataFrame连接起来。

步骤一:预处理df_Stops,生成目标坐标列

首先,我们可以在df_Stops中预先计算出所需的lat_long字符串。这样,在后续的合并操作中,我们直接使用这个预计算好的列,避免了在合并过程中重复进行字符串拼接。

# 预处理df_Stops,生成lat_long列df_Stops["lat_long"] = df_Stops[["stop_lat", "stop_lon"]].apply(    lambda x: ','.join(map(str, x)), axis=1)print("预处理后的df_Stops(部分列):")print(df_Stops[["stop_id", "lat_long"]].head())

这里对df_Stops使用apply(axis=1)来拼接字符串,虽然也是行级操作,但它只在df_Stops这个相对较小的查找表上执行一次,并且只涉及两个列的简单操作,其性能开销远小于在主循环中反复对大DataFrame进行apply。

步骤二:使用merge()连接DataFrame

有了预处理好的df_Stops,我们可以使用pd.merge()函数将其与df_RoadSegments连接起来。merge()函数类似于SQL中的JOIN操作,它能够根据一个或多个共同的键将两个DataFrame的行进行匹配。

# 使用merge()连接df_RoadSegments和df_Stopsdf_RoadSegments_merged = df_RoadSegments.merge(    df_Stops[["stop_id", "lat_long"]],  # 只选择需要的列进行合并    left_on="RoadSegmentOrigin",        # df_RoadSegments中用于匹配的列    right_on="stop_id",                 # df_Stops中用于匹配的列    how="left"                          # 左连接,保留df_RoadSegments的所有行)# 重命名合并后的列以更清晰地表示其含义df_RoadSegments_merged = df_RoadSegments_merged.rename(columns={"lat_long": "OriginCoordinates"})print("n合并后的df_RoadSegments:")print(df_RoadSegments_merged)

代码解析:

df_Stops[[“stop_id”, “lat_long”]]: 我们只选择df_Stops中需要合并的stop_id和lat_long列,以减少内存占用和提高效率。left_on=”RoadSegmentOrigin”: 指定df_RoadSegments中作为连接键的列。right_on=”stop_id”: 指定df_Stops中作为连接键的列。how=”left”: 执行左连接。这意味着df_RoadSegments中的所有行都将被保留,如果RoadSegmentOrigin在df_Stops中没有匹配项,则OriginCoordinates列将填充NaN。rename(columns={“lat_long”: “OriginCoordinates”}): 将合并后得到的lat_long列重命名为更具描述性的OriginCoordinates,使其与原始需求保持一致。

性能优势与最佳实践

采用merge()而非循环和apply(axis=1)具有显著的优势:

极高的性能: merge()操作在底层使用C语言实现,经过高度优化,能够以远超Python循环的速度处理大量数据。简洁的代码: 减少了代码量,提高了可读性。可扩展性: 随着数据量的增长,merge()的性能衰减远低于基于Python循环的方法。Pandas惯用法: 遵循Pandas的“向量化优先”原则,是处理DataFrame数据整合的标准方法。

总结与注意事项:

避免行级迭代: 在Pandas中,应尽量避免使用for循环、itertuples()或iterrows()来对DataFrame进行逐行处理,尤其是在循环内部又进行昂贵操作时。优先使用向量化操作: 尽可能利用Pandas内置的向量化函数(如sum(), mean(), 字符串方法str.contains(), 日期时间方法dt.day等)进行数据转换和计算。善用merge()和join(): 对于跨DataFrame的数据查找和整合,merge()和join()是最高效且推荐的方式。预处理和缓存: 对于频繁查找的数据,可以考虑预先处理并存储在一个高效的查找结构中(例如,将查找表设置为索引,或者如本例中预计算目标列)。

通过理解Pandas的底层机制并采纳向量化操作,我们可以编写出更高效、更易维护的数据处理代码,从而充分发挥Pandas的强大功能。

以上就是优化Pandas数据处理:告别慢速循环,拥抱高效Merge的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1368917.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 09:11:48
下一篇 2025年12月14日 09:11:59

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    300

发表回复

登录后才能评论
关注微信