Python如何操作Excel_Python读写Excel文件方法归纳

Python操作Excel推荐根据需求选择库:处理.xlsx文件且需单元格级控制时用openpyxl;进行数据分析和批量处理时首选pandas;兼容旧版.xls文件可使用xlrd和xlwt;生成复杂报表且仅需写入时选用xlsxwriter。openpyxl支持读写及样式、合并单元格等精细控制,适合自动化报告;pandas以DataFrame形式高效处理数据,便于清洗、分析与批量读写;xlrd/xlwt适用于遗留.xls文件;xlsxwriter擅长创建图表、条件格式等高级格式。实际应用中常结合使用,如用pandas处理数据后交由openpyxl格式化输出。处理数据类型时需注意Excel日期存储机制,合理转换datetime;数字类型注意浮点精度与文本型数字的转换;字符串需清理空格与编码问题;公式在openpyxl中可读取或写入,pandas仅保留结果;格式控制需依赖openpyxl或xlsxwriter。批量处理时应启用openpyxl的read_only模式提升大文件读取性能,优先使用pandas批量读写,避免频繁I/O操作,采用append或to_excel实现高效写入。错误处理需检查文件存在性与权限,捕获FileNotFoundError、PermissionError等异常,验证文件格式与数据完整性,结合try-except实现单文件容错,确保批处理流程不中断,并通过logging记录

python如何操作excel_python读写excel文件方法归纳

Python操作Excel文件,主要依赖于几个功能强大的第三方库,如

openpyxl

pandas

xlrd

xlwt

xlsxwriter

。它们各自有不同的侧重点和优势,能够实现从简单的数据读写到复杂的格式控制、图表生成等多种需求,极大地提升了处理Excel文件的自动化能力和效率。

解决方案

在Python中读写Excel文件,我们通常会根据文件格式(

.xls

.xlsx

)和具体需求来选择合适的库。对于现代的

.xlsx

格式文件,

openpyxl

pandas

是两个最常用的选择,它们各有侧重。

使用

openpyxl

进行读写(推荐用于

.xlsx

文件)

openpyxl

是一个功能全面的库,可以处理

.xlsx

文件的读写,包括单元格数据、样式、合并单元格、图表等。它在处理单元格级别的精细控制时表现出色。

立即学习“Python免费学习笔记(深入)”;

读取Excel文件:

from openpyxl import load_workbooktry:    # 加载工作簿    workbook = load_workbook('示例文件.xlsx')    # 选择活动工作表,或者通过名称选择    sheet = workbook.active    # sheet = workbook['Sheet1']    print("读取单元格数据:")    # 读取单个单元格    cell_a1 = sheet['A1'].value    print(f"A1: {cell_a1}")    # 遍历所有行和列    for row in sheet.iter_rows(min_row=1, max_row=sheet.max_row, min_col=1, max_col=sheet.max_column):        row_values = [cell.value for cell in row]        print(row_values)except FileNotFoundError:    print("错误:文件未找到,请检查路径和文件名。")except Exception as e:    print(f"读取文件时发生错误: {e}")

写入Excel文件:

from openpyxl import Workbooktry:    # 创建一个新的工作簿    workbook = Workbook()    # 获取活动工作表    sheet = workbook.active    sheet.title = "我的数据" # 设置工作表名称    # 写入单个单元格    sheet['A1'] = "姓名"    sheet['B1'] = "年龄"    sheet['C1'] = "城市"    # 写入多行数据    data = [        ("张三", 30, "北京"),        ("李四", 25, "上海"),        ("王五", 35, "广州")    ]    for row_data in data:        sheet.append(row_data)    # 保存工作簿    workbook.save('新生成文件.xlsx')    print("Excel文件'新生成文件.xlsx'已成功创建并写入数据。")except Exception as e:    print(f"写入文件时发生错误: {e}")

使用

pandas

进行读写(推荐用于数据分析和批量处理)

pandas

是Python数据科学的核心库,它将Excel文件视为表格数据,并能轻松地将其转换为DataFrame对象进行处理。对于需要进行数据清洗、分析、聚合等操作的场景,

pandas

是效率最高的选择。

读取Excel文件:

import pandas as pdtry:    # 读取Excel文件到DataFrame    df = pd.read_excel('示例文件.xlsx')    print("读取到的DataFrame:")    print(df.head()) # 显示前几行数据    # 如果Excel有多个工作表,可以指定sheet_name    # df_sheet2 = pd.read_excel('示例文件.xlsx', sheet_name='Sheet2')except FileNotFoundError:    print("错误:文件未找到,请检查路径和文件名。")except Exception as e:    print(f"读取文件时发生错误: {e}")

写入Excel文件:

import pandas as pdtry:    # 创建一个DataFrame    data = {        '产品': ['A', 'B', 'C', 'D'],        '销量': [100, 150, 80, 200],        '价格': [10.5, 12.0, 9.8, 11.2]    }    df_new = pd.DataFrame(data)    # 将DataFrame写入Excel文件    # index=False表示不写入DataFrame的索引    df_new.to_excel('产品销售数据.xlsx', index=False)    print("Excel文件'产品销售数据.xlsx'已成功创建并写入数据。")    # 写入到不同的工作表    # with pd.ExcelWriter('多工作表文件.xlsx') as writer:    #     df_new.to_excel(writer, sheet_name='销售数据', index=False)    #     pd.DataFrame({'ID': [1,2], '名称': ['测试1','测试2']}).to_excel(writer, sheet_name='其他数据', index=False)except Exception as e:    print(f"写入文件时发生错误: {e}")

其他库的简要说明:

xlrd

xlwt

主要用于处理旧版

.xls

文件。

xlrd

用于读取,

xlwt

用于写入。对于

.xlsx

文件,

xlrd

在较新版本中出于安全考虑,默认不再支持。如果你的项目需要兼容大量旧版Excel文件,它们依然有用。

xlsxwriter

这是一个专门用于写入

.xlsx

文件的库,功能非常强大,可以创建复杂的图表、条件格式、数据验证等,但它不支持读取。如果你需要生成高度定制化的报表,它会是很好的选择。

Python操作Excel时,选择哪个库最合适?

在我看来,选择哪个Python库来操作Excel,很大程度上取决于你的具体需求和文件类型。这就像选工具,你得知道自己要拧什么螺丝。

如果你主要处理的是现代

.xlsx

格式文件,并且需要对单元格进行精细控制,比如设置样式、合并单元格、读取或写入特定位置的单个数据,那么

openpyxl

几乎是我的首选。它提供了非常直观的API来模拟Excel的结构,上手也比较容易。我个人在做一些自动化报告生成,需要调整表头样式、填充颜色或者插入图片时,都会倾向于用

openpyxl

但如果你的任务更多是关于数据处理、分析,比如从Excel中读取大量数据进行清洗、转换,然后可能再将处理后的数据写入到另一个Excel文件,那么

pandas

无疑是更强大的选择。

pandas

将Excel数据抽象成DataFrame,这使得数据操作变得极其高效和便捷。比如,我要从一个包含几十万行销售数据的Excel里筛选出某个区域的销售额,用

pandas

几行代码就能搞定,性能也非常好。它的

read_excel

to_excel

方法简直是数据工作者的福音。

对于那些遗留的

.xls

文件,

xlrd

xlwt

仍然是必要的,尽管现在

.xlsx

已经成为主流。不过,需要注意

xlrd

在处理

.xlsx

文件时的限制和安全策略变化。至于

xlsxwriter

,它是一个非常专业的写入库,如果你需要生成带有复杂图表、宏或者特定格式的报表,并且不需要读取现有文件,那么它能提供比

openpyxl

更强大的定制能力。

总而言之,我的经验是:

数据分析和批量数据操作:

pandas

是王者。

.xlsx

文件精细化控制(读写):

openpyxl

是多面手。

.xls

文件兼容:

xlrd

xlwt

是历史遗留的解决方案。复杂

.xlsx

报表生成(仅写):

xlsxwriter

是专家级工具。

很多时候,我甚至会结合使用它们,比如用

pandas

读取数据并进行初步处理,然后将DataFrame传递给

openpyxl

,利用

openpyxl

的特性来对最终输出的Excel文件进行样式和布局的调整。这就像是先用挖掘机把土挖出来(

pandas

),再用铲子精细平整(

openpyxl

)。

Python读写Excel文件时,如何处理常见的数据类型和格式问题?

在Python与Excel交互时,数据类型和格式问题常常是让人头疼的细节,因为Excel本身在数据存储和显示上有一些“约定俗成”的规则。理解这些,能让我们少走很多弯路。

首先是日期和时间。Excel内部将日期和时间存储为数字,表示从某个基准日期(Windows通常是1900年1月1日,Mac是1904年1月1日)开始的天数。小数部分表示时间。当Python库读取时,它们会尝试将这些数字转换为Python的

datetime

对象。

openpyxl

通常能很好地完成这个转换,但有时你可能会得到一个浮点数,这时需要手动使用

openpyxl.utils.datetime.from_excel

进行转换。

pandas

read_excel

在默认情况下也能智能识别日期格式,但如果格式不标准,可能需要通过

parse_dates

参数或者后续的

pd.to_datetime()

进行处理。写入时,Python的

datetime

对象通常会被正确地转换为Excel日期格式,但如果需要特定的日期显示格式,可能需要在

openpyxl

中设置单元格的

number_format

,或者在

xlsxwriter

中应用格式。

接着是数字类型。Excel不区分整数和浮点数,统一处理。Python读取时,通常会转换为

int

float

。但要注意浮点数的精度问题,Excel和Python在内部表示浮点数的方式可能略有不同,这在进行精确计算时需要留意。如果Excel单元格中包含的是以文本形式存储的数字(比如前面带单引号),

pandas

在读取时可能默认将其识别为字符串,这时需要后续进行类型转换,比如

df['列名'].astype(float)

字符串方面,主要问题是编码。现代Excel文件(

.xlsx

)通常使用UTF-8编码,Python也能很好地处理。但如果遇到一些老旧文件或者特殊字符,可能会出现乱码。此外,Excel单元格中的字符串可能包含前导或尾随空格,或者不可见的换行符。

pandas

在读取后,可以方便地使用

df['列名'].str.strip()

来清理这些空格。

公式的处理也很有意思。

openpyxl

在读取时,你可以选择获取公式本身(

cell.value

会得到公式字符串,如

=SUM(A1:A5)

),或者获取公式计算后的结果(

cell.value

在加载时指定

data_only=True

)。写入时,你可以直接将公式字符串赋给单元格,Excel会在打开时自动计算。

pandas

在读取时通常只获取公式计算后的结果,不保留公式本身。

最后是单元格格式,比如字体、颜色、背景色、边框、合并单元格等。

pandas

在写入Excel时,通常不会保留DataFrame的任何格式信息,只会写入纯数据。如果你需要控制这些格式,

openpyxl

xlsxwriter

是你的好帮手。

openpyxl

允许你创建

Font

PatternFill

Border

等对象并应用到单元格或区域,甚至可以处理合并单元格。

xlsxwriter

则提供了更强大的格式化API,特别适合生成复杂的报表。但这也意味着你需要编写更多的代码来定义这些样式,而不是像

pandas

那样简单地

to_excel()

。我个人在处理格式时,通常会先用

pandas

处理好数据,然后用

openpyxl

加载这个文件,再进行格式化,这样可以兼顾效率和美观。

Python批量处理Excel文件,有哪些性能优化和错误处理策略?

批量处理Excel文件,尤其是当文件数量多或者单个文件体量巨大时,性能和错误处理就显得尤为关键。我在这方面踩过不少坑,所以有些心得可以分享。

性能优化策略:

选择合适的库和模式:

对于大文件读取,

openpyxl

有一个

read_only

模式,可以显著减少内存占用和加载时间。它会以流式方式读取文件,而不是一次性加载所有内容。

pandas

read_excel

在处理大量数据时通常表现出色,因为它底层做了很多优化。避免在循环中频繁打开和关闭文件,尽量一次性加载或写入。

避免不必要的单元格操作:

openpyxl

中,直接通过

sheet['A1']

访问单元格会比使用

sheet.cell(row=1, column=1)

略慢。更重要的是,尽量使用

sheet.iter_rows()

sheet.iter_cols()

迭代器来遍历单元格,而不是通过索引

sheet[row][col]

,这对于大文件性能提升非常明显。如果只是想获取所有数据,一次性将整个区域的数据读入列表或

pandas

DataFrame会比逐个单元格读取快得多。

批量写入:

openpyxl

中,使用

sheet.append(row_data)

比逐个设置单元格值(

sheet.cell(row, col, value)

)效率更高,因为它内部做了优化。如果数据量大,先构建一个

pandas

DataFrame,然后用

df.to_excel()

一次性写入,这是最高效的写入方式。

减少磁盘I/O:

如果可以,尽量在内存中完成大部分数据处理,最后再进行一次性写入。频繁地读取和保存文件会大大降低效率。考虑使用

io.BytesIO

io.StringIO

在内存中操作文件,特别是在Web服务或临时文件场景下。

错误处理策略:

文件存在性及权限检查:

在尝试打开或保存文件之前,使用

os.path.exists()

检查文件是否存在,并确保有读写权限。这能避免最常见的

FileNotFoundError

PermissionError

。始终用

try-except

块包裹文件操作,捕获

FileNotFoundError

PermissionError

等。

import osif not os.path.exists(file_path):    print(f"错误:文件 '{file_path}' 不存在。")    return# 尝试打开文件try:    # ... 文件操作 ...except PermissionError:    print(f"错误:没有权限访问文件 '{file_path}'。")

Excel文件格式校验:

Excel文件可能损坏或格式不正确。

openpyxl

pandas

在加载时可能会抛出

BadZipFile

InvalidFile

等异常。捕获这些异常,并给出友好的错误提示。对于用户上传的文件,最好进行初步的文件类型检查,确保它是

.xlsx

.xls

文件。

数据校验:

读取数据后,对关键列的数据类型、范围、非空性等进行校验。例如,如果某列应该是数字,但读出来是字符串,需要进行转换并处理转换失败的情况。

pandas

提供了强大的数据校验能力,比如

df.isnull().sum()

检查缺失值,

df['列名'].apply(lambda x: isinstance(x, str))

检查类型等。

日志记录:

在批量处理过程中,详细记录每个文件的处理状态、遇到的错误、跳过的文件等信息。这对于事后排查问题至关重要。使用Python的

logging

模块是一个好习惯。记录错误发生的文件名、行号、错误类型和简要描述。

健壮的循环和跳过机制:

在批量处理多个文件时,即使某个文件处理失败,也不应该中断整个批处理过程。使用

try-except

块包裹单个文件的处理逻辑,捕获异常后,记录错误并继续处理下一个文件。

import globexcel_files = glob.glob('data/*.xlsx')for file_path in excel_files:    try:        print(f"正在处理文件: {file_path}")        # ... 处理单个Excel文件的代码 ...        print(f"文件 '{file_path}' 处理完成。")    except Exception as e:        print(f"处理文件 '{file_path}' 时发生错误: {e}")        # 记录错误到日志文件        continue # 继续处理下一个文件

这些策略的运用,能让你的Python Excel处理脚本更加稳定、高效,尤其是在面对真实世界中各种“不规范”的Excel文件时,它们能帮你避免很多不必要的麻烦。

以上就是Python如何操作Excel_Python读写Excel文件方法归纳的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1368977.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 09:14:43
下一篇 2025年12月14日 09:14:54

相关推荐

  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • CSS元素设置em和transition后,为何载入页面无放大效果?

    css元素设置em和transition后,为何载入无放大效果 很多开发者在设置了em和transition后,却发现元素载入页面时无放大效果。本文将解答这一问题。 原问题:在视频演示中,将元素设置如下,载入页面会有放大效果。然而,在个人尝试中,并未出现该效果。这是由于macos和windows系统…

    2025年12月24日
    200
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 如何用HTML/JS实现Windows 10设置界面鼠标移动探照灯效果?

    Win10设置界面中的鼠标移动探照灯效果实现指南 想要在前端开发中实现类似于Windows 10设置界面的鼠标移动探照灯效果,有两种解决方案:CSS 和 HTML/JS 组合。 CSS 实现 不幸的是,仅使用CSS无法完全实现该效果。 立即学习“前端免费学习笔记(深入)”; HTML/JS 实现 要…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 如何用前端技术实现Windows 10 设置界面鼠标移动时的探照灯效果?

    探索在前端中实现 Windows 10 设置界面鼠标移动时的探照灯效果 在前端开发中,鼠标悬停在元素上时需要呈现类似于 Windows 10 设置界面所展示的探照灯效果,这其中涉及到了元素外围显示光圈效果的技术实现。 CSS 实现 虽然 CSS 无法直接实现探照灯效果,但可以通过以下技巧营造出类似效…

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • 苹果浏览器网页背景图色差问题:如何解决背景图不一致?

    网页背景图在苹果浏览器上出现色差 一位用户在使用苹果浏览器访问网页时遇到一个问题,网页上方的背景图比底部的背景图明显更亮。 这个问题的原因很可能是背景图没有正确配置 background-size 属性。在 windows 浏览器中,背景图可能可以自动填满整个容器,但在苹果浏览器中可能需要显式设置 …

    2025年12月24日
    400
  • 苹果浏览器网页背景图像为何色差?

    网页背景图像在苹果浏览器的色差问题 在不同浏览器中,网站的背景图像有时会出现色差。例如,在 Windows 浏览器中显示正常的上层背景图,在苹果浏览器中却比下层背景图更亮。 问题原因 出现此问题的原因可能是背景图像未正确设置 background-size 属性。 解决方案 为确保背景图像在不同浏览…

    2025年12月24日
    500
  • 苹果电脑浏览器背景图亮度差异:为什么网页上下部背景图色差明显?

    背景图在苹果电脑浏览器上亮度差异 问题描述: 在网页设计中,希望上部元素的背景图与页面底部的背景图完全对齐。而在 Windows 中使用浏览器时,该效果可以正常实现。然而,在苹果电脑的浏览器中却出现了明显的色差。 原因分析: 如果您已经排除屏幕分辨率差异的可能性,那么很可能是背景图的 backgro…

    2025年12月24日
    000
  • 正则表达式在文本验证中的常见问题有哪些?

    正则表达式助力文本输入验证 在文本输入框的验证中,经常遇到需要限定输入内容的情况。例如,输入框只能输入整数,第一位可以为负号。对于不会使用正则表达式的人来说,这可能是个难题。下面我们将提供三种正则表达式,分别满足不同的验证要求。 1. 可选负号,任意数量数字 如果输入框中允许第一位为负号,后面可输入…

    2025年12月24日
    000
  • 如何在 VS Code 中解决折叠代码复制问题?

    解决 VS Code 折叠代码复制问题 在 VS Code 中使用折叠功能可以帮助组织长代码,但使用复制功能时,可能会遇到只复制可见部分的问题。以下是如何解决此问题: 当代码被折叠时,可以使用以下简单操作复制整个折叠代码: 按下 Ctrl + C (Windows/Linux) 或 Cmd + C …

    2025年12月24日
    000
  • 为什么多年的经验让我选择全栈而不是平均栈

    在全栈和平均栈开发方面工作了 6 年多,我可以告诉您,虽然这两种方法都是流行且有效的方法,但它们满足不同的需求,并且有自己的优点和缺点。这两个堆栈都可以帮助您创建 Web 应用程序,但它们的实现方式却截然不同。如果您在两者之间难以选择,我希望我在两者之间的经验能给您一些有用的见解。 在这篇文章中,我…

    2025年12月24日
    000
  • 姜戈顺风

    本教程演示如何在新项目中从头开始配置 django 和 tailwindcss。 django 设置 创建一个名为 .venv 的新虚拟环境。 # windows$ python -m venv .venv$ .venvscriptsactivate.ps1(.venv) $# macos/linu…

    2025年12月24日
    000
  • 花 $o 学习这些编程语言或免费

    → Python → JavaScript → Java → C# → 红宝石 → 斯威夫特 → 科特林 → C++ → PHP → 出发 → R → 打字稿 []https://x.com/e_opore/status/1811567830594388315?t=_j4nncuiy2wfbm7ic…

    2025年12月24日
    000
  • css怎么设置超出显示省略号

    css设置超出显示省略号的方法:1、使用“overflow:hidden;”语句把超出的部分隐藏起来;2、使用“text-overflow:ellipsis;”语句在文本溢出包含元素时,显示省略符号来代表被隐藏的部分。 本教程操作环境:windows7系统、CSS3&&HTML5版、…

    2025年12月24日
    000
  • 如何使用纯CSS实现Windows启动界面的动画效果

    本篇文章给大家带来的内容是关于如何使用纯css实现windows启动界面的动画效果 ,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。 效果预览 源代码下载 https://github.com/comehope/front-end-daily-challenges 代码解读 定义 d…

    2025年12月24日
    000
  • 响应式HTML5按钮适配不同屏幕方法【方法】

    实现响应式HTML5按钮需五种方法:一、CSS媒体查询按max-width断点调整样式;二、用rem/vw等相对单位替代px;三、Flexbox控制容器与按钮伸缩;四、CSS变量配合requestAnimationFrame优化的JS动态适配;五、Tailwind等框架的响应式工具类。 如果您希望H…

    2025年12月23日
    000
  • html5怎么导视频_html5用video标签导出或Canvas转DataURL获视频【导出】

    HTML5无法直接导出video标签内容,需借助Canvas捕获帧并结合MediaRecorder API、FFmpeg.wasm或服务端协同实现。MediaRecorder适用于WebM格式前端录制;FFmpeg.wasm支持MP4等格式及精细编码控制;服务端方案适合高负载场景。 如果您希望在网页…

    2025年12月23日
    300
  • 如何查看编写的html_查看自己编写的HTML文件效果【效果】

    要查看HTML文件的浏览器渲染效果,需确保文件以.html为扩展名保存、用浏览器直接打开、利用开发者工具调试、必要时启用本地HTTP服务器、或使用编辑器实时预览插件。 如果您编写了HTML代码,但无法直观看到其在浏览器中的实际渲染效果,则可能是由于文件未正确保存、未使用浏览器打开或文件扩展名设置错误…

    2025年12月23日
    400

发表回复

登录后才能评论
关注微信