如何用Python实现一个LRU缓存?

答案:LRU缓存通过字典和双向链表结合实现,字典提供O(1)查找,双向链表维护访问顺序,确保插入、删除和访问更新均为O(1)操作。每次get或put操作都会将对应节点移至链表头部,当缓存满时,尾部节点被移除,从而保证最久未使用项优先淘汰。虚拟头尾节点简化边界处理,而OrderedDict虽可替代实现,但自定义方式更利于理解底层机制。

如何用python实现一个lru缓存?

在Python中实现LRU(Least Recently Used)缓存,核心思路在于巧妙地结合哈希表(Python的字典)和双向链表。字典确保我们能以O(1)的平均时间复杂度快速查找缓存中的任何项,而双向链表则负责维护项的访问顺序,使得最近使用的项总在链表头部,最久未使用的项(即待淘汰项)总在链表尾部,这样无论是更新访问顺序还是进行淘汰,都能保持高效。

解决方案

class Node:    """双向链表节点定义"""    def __init__(self, key, value):        self.key = key        self.value = value        self.prev = None        self.next = Noneclass LRUCache:    """    LRU缓存实现,结合字典和双向链表    """    def __init__(self, capacity: int):        if capacity  int:        """        获取缓存项。如果存在,将其移动到链表头部并返回其值;否则返回-1。        """        if key not in self.cache:            return -1        node = self.cache[key]        self._move_to_head(node)        return node.value    def put(self, key: int, value: int) -> None:        """        放入缓存项。        如果key已存在,更新其值并将其移动到链表头部。        如果key不存在:            如果缓存未满,创建新节点并添加到链表头部。            如果缓存已满,移除链表尾部(最久未使用)的节点,再添加新节点到头部。        """        if key in self.cache:            node = self.cache[key]            node.value = value            self._move_to_head(node)        else:            new_node = Node(key, value)            self.cache[key] = new_node            self._add_node(new_node)            if len(self.cache) > self.capacity:                # 移除最久未使用的节点 (tail.prev)                lru_node = self.tail.prev                self._remove_node(lru_node)                del self.cache[lru_node.key]

LRU缓存为何偏爱双向链表而非普通列表?

在我看来,LRU缓存选择双向链表,这背后是性能和操作复杂度的深思熟虑。我们都知道,Python的

list

在末尾添加(

append

)和删除(

pop

)通常是O(1)操作,但如果在中间或头部进行插入或删除,其时间复杂度就直接飙升到O(N),因为需要移动后续所有元素。对于LRU缓存来说,每次访问一个元素,都需要将其“提升”到“最近使用”的位置,这通常意味着从当前位置删除,再插入到链表头部。如果用普通列表,这个“提升”操作会非常昂贵。

想象一下,我们缓存了1000个项目,突然访问了第500个。如果用普通列表,我们得先找到它(O(N)),然后删除它(O(N)),再把它加到列表开头(又是一个O(N)),这简直是性能灾难。而双向链表就不同了。每个节点都存储了指向前一个和后一个节点的引用。这意味着一旦我们通过字典以O(1)时间找到某个节点,我们就可以在O(1)时间内完成它的删除(只需修改它前后节点的

next

prev

指针)和插入(同样是修改几个指针)。这种效率上的巨大差异,正是双向链表在LRU实现中不可或缺的原因。它让我们的缓存操作,特别是“更新访问顺序”这一核心逻辑,保持了极高的效率。

如何处理缓存容量限制和淘汰策略?

处理LRU缓存的容量限制和淘汰策略,是整个实现的关键。我的做法是,在

LRUCache

__init__

方法中,我们首先设定一个

capacity

。这个

capacity

就是缓存能容纳的最大项目数。

立即学习“Python免费学习笔记(深入)”;

put

方法被调用时,我们首先检查要插入的

key

是否已经存在于

self.cache

字典中。

如果

key

已存在:这表示我们只是更新一个现有项。在这种情况下,我们更新其

value

,然后最关键的一步是调用

_move_to_head

方法,将其对应的节点从链表当前位置移除,再添加到链表的头部。这反映了它刚刚被“使用”了,所以现在是最新的。如果

key

不存在:这是一个全新的项。我们首先创建一个新的

Node

,然后将其添加到

self.cache

字典中,并调用

_add_node

方法将其添加到链表的头部。紧接着,我们就需要检查缓存是否“超载”了。我们通过

len(self.cache) > self.capacity

来判断当前缓存中的项目数量是否超过了设定的

capacity

。如果超载了,这意味着我们必须淘汰一个项目来为新项目腾出空间。LRU的策略是淘汰“最久未使用的”项目。在我们的双向链表中,这个项目就是紧挨着虚拟尾节点

self.tail

的前一个节点(即

self.tail.prev

)。我们称之为

lru_node

。我们调用

_remove_node(lru_node)

将其从链表中移除,然后通过

del self.cache[lru_node.key]

将其从字典中也删除,完成彻底的淘汰。

这种机制确保了缓存始终在容量限制内运行,并且每次淘汰都严格遵循了“最久未使用”的原则。虚拟头尾节点的设计,更是简化了链表边缘情况的处理,让代码逻辑更清晰。

Python内置的

OrderedDict

能否替代自定义LRU实现?

当然可以,而且在很多简单场景下,使用Python标准库

collections

模块中的

OrderedDict

来实现LRU缓存会显得非常简洁高效。

OrderedDict

本身就维护了键值对的插入顺序。它的

move_to_end

方法和在插入时检查容量并删除最老项的机制,与LRU缓存的逻辑高度契合。

一个基于

OrderedDict

的LRU实现大致会是这样:

from collections import OrderedDictclass LRUCacheOrderedDict:    def __init__(self, capacity: int):        self.capacity = capacity        self.cache = OrderedDict()    def get(self, key: int) -> int:        if key not in self.cache:            return -1        self.cache.move_to_end(key) # 将key移动到末尾,表示最近使用        return self.cache[key]    def put(self, key: int, value: int) -> None:        if key in self.cache:            self.cache.move_to_end(key) # 存在则移动到末尾        self.cache[key] = value # 更新或添加        if len(self.cache) > self.capacity:            self.cache.popitem(last=False) # 移除最老(最久未使用)的项

这种实现方式确实非常优雅,代码量大大减少,并且由于

OrderedDict

是用C实现的,其内部操作通常效率很高。

不过,话说回来,尽管

OrderedDict

能很好地完成任务,但它也隐藏了LRU缓存底层双向链表的精妙机制。对于初学者或者需要深入理解数据结构和算法的开发者来说,自己动手实现一个基于字典和双向链表的LRU缓存,就像我们前面做的那样,其教育价值是

OrderedDict

无法替代的。它能让我们更清晰地看到每个操作是如何影响底层数据结构的,以及为什么这些数据结构的选择如此关键。在面试或者需要对性能有极致掌控的场景下,理解并能手写底层逻辑,往往比仅仅会用库函数更能体现技术深度。所以,选择哪种方式,最终还是取决于具体的需求:追求简洁快速就用

OrderedDict

,追求深入理解和精细控制则倾向于自定义实现。

以上就是如何用Python实现一个LRU缓存?的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1370166.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 10:18:14
下一篇 2025年12月14日 10:18:28

相关推荐

  • Python BeautifulSoup:按序提取HTML文本及高亮标识

    本教程详细介绍如何使用Python的BeautifulSoup库,从HTML文本中高效提取所有文本段落,并准确识别哪些段落被特定标签(如class=’highlight’)包裹,同时严格保持文本在原始HTML中的出现顺序。通过迭代所有文本节点并检查其父元素,实现精确的数据结构…

    好文分享 2025年12月14日
    000
  • 使用BeautifulSoup在HTML中提取带高亮标记的文本并维护其原始顺序

    本教程演示如何使用Python的BeautifulSoup库从HTML文本中精确提取包含特定高亮标记的文本段落,同时完整保留所有文本内容的原始顺序,并明确标识每个文本段落是否被高亮。通过结合find_all(string=True)和find_parent()方法,可以高效地构建结构化数据,用于进一…

    2025年12月14日
    000
  • 如何对字典进行排序?

    字典排序并非改变其内部结构,而是通过sorted()函数根据键或值生成有序列表或新字典。Python 3.7+字典保持插入顺序,但排序操作仍需借助dict.items()与key参数实现,如按值排序用lambda item: item[1],复杂排序可通过返回元组实现多级排序规则。应用场景包括报告生…

    2025年12月14日
    000
  • Python BeautifulSoup:按序解析HTML文本并识别高亮内容

    本文详细介绍了如何使用Python的BeautifulSoup库,高效地从HTML文档中按原始顺序提取所有文本片段,并准确识别出哪些片段被特定CSS类(如highlight)的元素包裹。通过结合find_all(string=True)方法获取所有文本节点和find_parent()方法检查祖先元素…

    2025年12月14日
    000
  • NumPy 数组与 Python 原生列表的性能对比

    NumPy数组因C语言实现、静态类型和向量化操作,在数值计算中远快于需循环的Python列表,适合大规模同类型数据处理。 NumPy 数组在数值计算方面通常比 Python 原生列表快得多,因为 NumPy 使用向量化操作,而 Python 列表需要循环遍历。 NumPy 数组的性能优势主要体现在以…

    2025年12月14日
    000
  • 使用 Pandas DataFrame 模拟多维 Tensor 数据结构

    本文旨在指导读者如何使用 Pandas DataFrame 模拟多维 Tensor 的数据结构,解决在 Pandas 中存储和操作类似 Tensor 的数据,并提供了一系列示例代码,展示如何进行数据访问、修改和聚合操作,帮助读者更有效地利用 Pandas 处理复杂的数据分析任务。 Pandas Da…

    2025年12月14日
    000
  • Pandas DataFrame 中使用聚合函数计算百分比的实用指南

    本文旨在指导读者如何高效地在 Pandas DataFrame 中使用聚合函数,特别是计算分组后的百分比。我们将通过一个实际案例,演示如何按设备分组,并计算带宽使用率,避免使用低效的 apply 方法,提供更简洁、高效的解决方案。 问题描述 假设我们有一个 DataFrame,记录了不同设备的网络流…

    2025年12月14日
    000
  • 使用 FastAPI 上传图片并应用于 YOLOv8 模型

    第一段引用上面的摘要: 本文档旨在指导开发者如何使用 FastAPI 框架构建一个 REST API 接口,该接口能够接收上传的图片,并将其传递给 YOLOv8 模型进行处理。我们将详细介绍如何读取上传的图片文件,将其转换为 YOLOv8 模型可以接受的格式,并返回预测结果。通过本文的学习,你将掌握…

    2025年12月14日
    000
  • 使用 FastAPI 上传图像到 YOLOv8 模型进行预测

    本文档介绍了如何使用 FastAPI 构建一个 REST API 接口,该接口能够接收图像文件,并将其传递给 YOLOv8 模型进行预测。重点讲解如何处理上传的图像数据,将其转换为 YOLOv8 模型所支持的格式,并展示了完整的代码示例,帮助开发者快速搭建图像预测服务。 图像上传与处理 在使用 YO…

    2025年12月14日
    000
  • 使用列表动态调用对象属性:Python getattr() 函数详解

    本文旨在讲解如何利用 Python 的 getattr() 函数,结合列表动态地访问和调用对象的属性。通过示例代码和详细解释,你将学会如何根据列表中的字符串,灵活地获取对象的属性值,并将其应用于各种场景,例如动态执行方法、访问不同属性等,从而提高代码的灵活性和可维护性。 在 Python 中,我们经…

    2025年12月14日
    000
  • 使用列表动态调用对象属性:Python getattr 函数详解

    本文旨在讲解如何使用 Python 中的 getattr 函数,通过列表中的字符串动态地访问和调用对象的属性。我们将通过示例代码演示如何实现这一功能,并讨论其在实际应用中的优势和注意事项。掌握 getattr 函数能够使你的代码更加灵活和可配置,尤其是在需要根据外部输入或运行时状态来决定访问哪些属性…

    2025年12月14日
    000
  • 如何使用列表动态调用对象属性

    本文介绍如何使用Python列表中的字符串动态地访问和调用对象的属性。核心方法是利用getattr()函数,它允许我们通过字符串来获取对象的属性。通过本文,你将学会如何根据列表中的内容,灵活地访问对象的不同属性,从而实现更动态和可配置的代码逻辑。 在Python中,有时我们需要根据运行时的数据来动态…

    2025年12月14日
    000
  • 通过列表动态调用对象属性:Python getattr() 函数详解

    本文旨在介绍如何使用 Python 的 getattr() 函数,通过存储属性名称的列表来动态地访问和调用对象的属性。我们将通过示例代码详细解释 getattr() 的用法,并讨论在实际应用中需要注意的关键点,帮助开发者灵活地处理需要动态访问对象属性的场景。 在 Python 编程中,我们经常会遇到…

    2025年12月14日
    000
  • ORM(如 SQLAlchemy, Django ORM)的工作原理与优缺点

    ORM是连接面向对象编程与关系型数据库的桥梁,通过将数据库表映射为代码中的类和对象,实现用%ignore_a_1%操作数据而无需手动编写SQL。其核心机制包括模型定义、查询转换、会话管理与事务持久化,能显著提升开发效率、增强代码可维护性并支持数据库无关性。但ORM也带来性能开销、学习成本及N+1查询…

    2025年12月14日
    000
  • 列举Python中常见的数据结构及其特点。

    Python中最常见的数据结构包括列表、元组、字典和集合。列表是可变的有序序列,适合频繁修改的场景;元组是不可变的有序序列,用于固定数据;字典是键值对的无序集合,基于哈希表实现,查找效率高;集合是无序且不重复的元素集合,常用于去重和集合运算。此外,collections模块提供了deque、Coun…

    2025年12月14日
    000
  • 使用 Scikit-learn 构建基础的机器学习模型

    使用Scikit-learn构建模型需遵循数据预处理、模型选择、训练、预测与评估的流程。首先用pandas加载数据并进行清洗,通过StandardScaler或OneHotEncoder处理数值和分类特征,利用ColumnTransformer和Pipeline整合预处理与模型训练,防止数据泄露。选…

    2025年12月14日
    000
  • 如何进行Python程序的调试(pdb)?

    答案:pdb提供交互式调试环境,支持断点、变量检查与修改、条件断点及事后调试,相比print更高效精准,适用于复杂问题定位。 Python程序的调试,尤其是使用内置的 pdb 模块,核心在于提供了一个交互式的环境,让开发者可以逐行执行代码、检查变量状态、设置断点,从而深入理解程序行为并定位问题。它就…

    2025年12月14日
    000
  • 如何理解Python的生成器和迭代器?

    生成器和迭代器通过惰性求值实现内存高效的数据处理,适用于大文件、无限序列和数据管道。迭代器需实现__iter__和__next__方法,生成器则用yield简化创建过程,生成器函数适合复杂逻辑,生成器表达式适合简洁转换,二者均支持按需计算,避免内存溢出,提升性能与代码可读性。 Python中的生成器…

    2025年12月14日
    000
  • 优化FastAPI在Google Cloud上的错误报告:消除冗余异常

    在使用Google Cloud Run部署FastAPI应用时,Google Cloud Error Reporting常显示Uvicorn、AnyIO等框架产生的冗余异常,掩盖了实际业务错误。本文提供了一种解决方案,通过自定义FastAPI异常处理器并结合raise exc from None,有…

    2025年12月14日
    000
  • Dunn’s Post Hoc检验P值对称性解析:理解秩次计算原理

    本文深入探讨了Python中Dunn’s Post Hoc检验在特定情况下出现p值对称性的现象。我们将揭示Dunn检验的核心机制——基于数据秩次而非原始数值进行计算。通过具体代码示例,文章解释了当数据秩次模式一致时,不同组间比较可能产生相同p值的原因,并演示了如何通过改变秩次分布来观察p…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信