如何实现 Python 的并发编程?threading 与 multiprocessing

Python threading和multiprocessing的核心区别在于:threading受GIL限制,无法实现CPU并行,适合I/O密集型任务;multiprocessing创建独立进程,绕开GIL,可利用多核实现真正并行,适合CPU密集型任务。1. threading共享内存、开销小,但GIL导致多线程不能并行执行Python代码;2. multiprocessing进程隔离、通信复杂、启动开销大,但能充分发挥多核性能。因此,I/O密集型任务应选择threading以高效切换等待,CPU密集型任务应选择multiprocessing以实现并行计算。

如何实现 python 的并发编程?threading 与 multiprocessing

Python 的并发编程主要依赖两个核心模块:

threading

multiprocessing

。简单来说,如果你处理的是大量等待外部响应(比如网络请求、文件读写)的 I/O 密集型任务,

threading

常常是首选,因为它开销小。但如果你的任务是计算量巨大、需要榨干 CPU 性能的计算密集型任务,那么

multiprocessing

才是正解,因为它能让你真正利用多核 CPU,绕开那个著名的 GIL(全局解释器锁)的限制。

要实现 Python 的并发,我们通常会从这两个模块入手。它们代表了两种不同的并发模型:线程(

threading

)和进程(

multiprocessing

)。

先说说

threading

。它允许你在同一个进程内创建多个执行流,这些线程共享进程的内存空间。这听起来很美,内存共享意味着数据交换方便。但问题是,CPython 有个“全局解释器锁”——GIL。这个锁规定了在任何时刻,只有一个线程能执行 Python 字节码。所以,尽管你有多个线程,但它们在同一时间点上,只有一个能真正跑起来。这意味着,对于纯粹的 CPU 密集型任务,

threading

无法实现真正的并行计算,因为它本质上是并发而非并行。它更擅长的是在等待 I/O 时切换到另一个线程,这样 CPU 就不会闲着。

import threadingimport timedef task_io_bound(name):    print(f"线程 {name}: 开始执行 I/O 密集型任务...")    time.sleep(2) # 模拟 I/O 等待    print(f"线程 {name}: 任务完成。")threads = []for i in range(3):    thread = threading.Thread(target=task_io_bound, args=(f"T{i}",))    threads.append(thread)    thread.start()for thread in threads:    thread.join()print("所有 I/O 密集型线程任务完成。")

然后是

multiprocessing

。这个模块就直接多了,它创建的是独立的进程,每个进程都有自己的 Python 解释器和内存空间。进程之间的数据是隔离的,所以它们不会受到 GIL 的限制。每个进程都能在自己的 CPU 核上独立运行,从而实现真正的并行计算。当然,进程间的通信就需要额外的机制,比如队列(

Queue

)或管道(

Pipe

)。它的缺点是启动开销相对大,因为要复制整个进程环境。

立即学习“Python免费学习笔记(深入)”;

import multiprocessingimport timeimport osdef task_cpu_bound(name):    print(f"进程 {name} (PID: {os.getpid()}): 开始执行 CPU 密集型任务...")    result = 0    for _ in range(10_000_000): # 模拟 CPU 密集计算        result += 1    print(f"进程 {name} (PID: {os.getpid()}): 任务完成,结果 {result}。")if __name__ == '__main__': # 确保在 Windows 上能正常运行    processes = []    for i in range(3):        process = multiprocessing.Process(target=task_cpu_bound, args=(f"P{i}",))        processes.append(process)        process.start()    for process in processes:        process.join()    print("所有 CPU 密集型进程任务完成。")

选择哪种方式,说白了,就是看你的任务瓶颈在哪里。I/O 等待多,选

threading

;计算量大,选

multiprocessing

Python

threading

multiprocessing

的核心区别是什么,以及何时选择它们

以上就是如何实现 Python 的并发编程?threading 与 multiprocessing的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1370283.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 10:24:37
下一篇 2025年12月14日 10:24:47

相关推荐

  • Python中的lambda函数有什么用途和限制?

    lambda函数与普通函数的主要区别在于:lambda是匿名函数,只能包含单个表达式,自动返回表达式结果,常用于map、filter、sorted等高阶函数中简化代码;而普通函数使用def定义,可包含多条语句和return语句,具有函数名,适用于复杂逻辑。例如,lambda x: xx 实现平方,而…

    好文分享 2025年12月14日
    000
  • 使用 Celery 实现分布式任务队列

    %ignore_a_1%通过解耦任务提交与执行,提升应用响应速度;支持高并发、可伸缩、可靠的任务处理,具备重试、调度与监控机制,适用于构建健壮的分布式后台系统。 Celery 是一个功能强大且灵活的分布式任务队列,它允许我们将耗时的任务从主应用流程中剥离出来,异步执行,从而显著提升应用的响应速度和用…

    2025年12月14日
    000
  • Django中的中间件(Middleware)是什么?

    Django中间件在请求响应周期中扮演核心角色,它作为请求与响应的拦截器,在process_request、process_view、process_response等方法中实现认证、日志、限流等横切功能,通过MIDDLEWARE列表按序执行,支持短路逻辑与异常处理,提升代码复用性与系统可维护性。 …

    2025年12月14日
    000
  • 解决 PyInstaller 命令未识别:PATH 配置与虚拟环境管理指南

    本文旨在解决PyInstaller命令在安装后仍提示“未识别”的问题。核心原因通常是系统PATH环境变量未正确包含PyInstaller可执行文件的路径,尤其是在使用Python虚拟环境时。教程将详细指导如何检查和配置PATH,确保PyInstaller命令的正确执行,从而顺利打包Python应用。…

    2025年12月14日
    000
  • *args 和 **kwargs 的作用与区别

    答案:args和kwargs提供灵活参数处理,args收集位置参数为元组,kwargs收集关键字参数为字典,适用于通用函数、装饰器、参数解包等场景,提升代码灵活性。 *args 和 **kwargs 是 Python 中处理函数可变参数的两个核心机制。简单来说, *args 允许你向函数传递任意数量…

    2025年12月14日
    000
  • 什么是MRO(方法解析顺序)?它是如何工作的?

    MRO通过C3线性化算法确定多重继承中方法的调用顺序,解决菱形继承的歧义问题;例如类C(A, B)时,MRO为[C, A, B, O],确保方法查找顺序明确且一致,支持super()的协作调用。 MRO,即方法解析顺序(Method Resolution Order),是Python在处理类继承,尤…

    2025年12月14日
    000
  • 解决PyInstaller未识别错误:构建Python可执行文件的路径配置指南

    本文旨在解决PyInstaller命令在VSCode或其他终端中无法被识别的问题。核心在于理解并正确配置环境变量PATH,特别是当使用Python虚拟环境时。教程将详细介绍如何激活虚拟环境、验证PyInstaller路径,以及如何在系统层面添加PyInstaller的安装路径,确保用户能顺利使用Py…

    2025年12月14日
    000
  • 如何实现Django的用户认证系统?

    Django的用户认证系统基于django.contrib.auth模块,提供用户注册、登录、注销、密码重置和权限管理功能;通过配置INSTALLED_APPS、运行migrate创建数据库表、设置URL路由映射认证视图(如LoginView)、自定义登录模板、配置重定向参数,并手动实现注册视图与表…

    2025年12月14日
    000
  • 如何进行数据库迁移(Migration)?

    数据库迁移的核心理念是“结构演进的版本控制”,即通过版本化、可追踪、可回滚的方式管理数据库Schema变更,确保团队协作中数据库结构的一致性。它关注的是表结构、索引、字段等“骨架”的变化,如添加字段或修改列类型,强调与应用代码迭代同步。而数据迁移则聚焦于“血肉”,即数据内容的转移、清洗、转换,例如更…

    2025年12月14日
    000
  • Python文本冒险游戏导航逻辑修正指南

    本教程探讨了Python文本冒险游戏中常见的房间导航逻辑错误,即玩家移动后可用路径未及时更新导致的问题。通过分析代码并提供修正方案,本文将指导开发者如何正确地在游戏循环中刷新当前房间的可移动方向,确保游戏流程的准确性和流畅性,从而避免因状态不同步而产生的意外行为。 文本冒险游戏导航逻辑:核心挑战 在…

    2025年12月14日
    000
  • 如何动态地创建一个类?

    动态创建类主要通过type()函数和元类实现。type()适合一次性生成类,语法简洁;元类则用于定义类的创建规则,适用于统一控制类的行为。核心应用场景包括ORM、插件系统和配置驱动的类生成。使用时需注意调试困难、命名冲突、继承复杂性等问题,最佳实践是封装逻辑、加强测试、避免过度设计。 动态地创建一个…

    2025年12月14日
    000
  • 如何计算列表中元素的频率?

    使用Counter是计算列表元素频率最高效的方法,代码简洁且性能优越;手动字典适用于小数据或学习场景;需注意大小写、非哈希对象和自定义逻辑等特殊情况处理。 计算列表中元素的频率,核心思路就是遍历列表,然后统计每个元素出现的次数。在Python中,这通常可以通过几种方式实现,最推荐且高效的办法是使用 …

    2025年12月14日
    000
  • 修复基于文本的游戏中的移动逻辑错误

    本文旨在帮助开发者解决基于文本的游戏中常见的移动逻辑错误。通过分析一个具体的案例,我们将深入探讨如何正确地更新玩家在游戏世界中的位置,并确保游戏能够准确地响应玩家的指令,从而避免出现意外的地点跳转或无效移动的提示。本文将提供修改后的代码示例,并解释关键的修复步骤,帮助开发者构建更稳定、更具沉浸感的文…

    2025年12月14日
    000
  • 如何实现进程间通信(IPC)?

    答案:不同IPC机制的适用场景与性能考量包括:匿名管道适用于父子进程间简单通信,性能高但受限;命名管道支持无关进程通信,灵活性增强;消息队列实现异步解耦,适合日志等场景,但有数据拷贝开销;共享内存速度最快,适合大数据量交互,但需配合信号量处理同步,复杂易错;套接字通用性强,支持本地及网络通信,是分布…

    2025年12月14日
    000
  • 如何应对反爬虫策略?IP 代理与用户代理池

    IP代理与用户代理池协同工作可有效应对反爬虫,通过模拟多样化真实用户行为,结合高质量代理管理、请求头一致性、无头浏览器及Cookie会话控制等策略,提升爬虫隐蔽性与稳定性。 应对反爬虫策略,尤其是那些复杂的、动态变化的检测机制,IP代理和用户代理池无疑是构建健壮爬虫系统的两大基石。它们的核心思想是模…

    2025年12月14日
    000
  • 如何用Python实现一个简单的爬虫?

    答案:使用Python实现简单爬虫最直接的方式是结合requests和BeautifulSoup库。首先通过requests发送HTTP请求获取网页HTML内容,并设置headers、超时和编码;然后利用BeautifulSoup解析HTML,通过CSS选择器提取目标数据,如文章标题和链接;为避免被…

    2025年12月14日
    000
  • 如何用Python实现栈和队列?

    使用列表实现栈高效,因append和pop操作均为O(1);但用列表实现队列时,pop(0)为O(n),性能差。应使用collections.deque实现队列,因其popleft为O(1)。封装类可提供更清晰接口和错误处理,适用于复杂场景。频繁出队或大数据量时优选deque,简单栈操作可选list…

    2025年12月14日
    000
  • 粒子模拟动画:从轨迹线到动态粒子云的实现

    本教程详细阐述了如何将粒子模拟的轨迹线动画转换为动态的粒子云动画。通过修改Matplotlib plot 函数的参数,将线条样式设置为“无”并使用圆形标记,实现了粒子在每个时间步的独立显示。此外,还介绍了优化动画播放流畅度的方法(调整 interval 参数)以及如何将动画保存为MP4文件,以提供更…

    2025年12月14日
    000
  • Python 中的元类(Metaclass)是什么?如何使用?

    元类是创建类的类,通过继承type并重写__new__或__init__方法,可在类创建时动态修改类的结构与行为,常用于ORM、接口强制等框架级开发,相比类装饰器更底层且强大,但应谨慎使用以避免复杂性和隐式副作用。 Python中的元类(Metaclass)说白了,就是创建类的“类”。我们平时定义一…

    2025年12月14日
    000
  • 优化Matplotlib粒子模拟动画:实现逐帧粒子云显示与MP4导出指南

    本教程旨在指导如何优化基于Matplotlib的粒子模拟动画,实现粒子在每个时间步以离散点(粒子云)的形式动态展示,而非轨迹连线。我们将详细介绍如何调整绘图样式以避免轨迹线,优化动画播放流畅度,并最终将高质量的粒子动画保存为MP4视频文件。 在进行物理模拟时,可视化结果是理解系统行为的关键。然而,默…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信