python中pandas的DataFrame怎么筛选数据_Pandas DataFrame数据筛选技巧

Pandas通过布尔索引实现多条件筛选,使用“&”(AND)、“|”(OR)组合多个条件,如(df[‘Age’] > 25) & (df[‘City’] == ‘New York’),需注意括号优先级。

python中pandas的dataframe怎么筛选数据_pandas dataframe数据筛选技巧

在Pandas中,要筛选DataFrame的数据,核心思想就是布尔索引(Boolean Indexing)。简单来说,就是你给DataFrame一个True/False的序列,Pandas会根据这个序列,只保留那些对应位置为True的行。这方法灵活得很,能让你根据各种条件,无论是数值、文本还是时间,精准地把你需要的数据“捞”出来。

说实话,第一次接触DataFrame筛选的时候,我个人觉得它有点像是在玩一个高级的“找不同”游戏。你设定好规则,然后Pandas就帮你把符合规则的数据找出来。最基础的筛选,就是直接把你的条件表达式写在DataFrame的方括号里。

假设我们有一个叫

df

的DataFrame,里面有

Name

,

Age

,

City

,

Score

这些列。

import pandas as pdimport numpy as np# 示例数据data = {    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Heidi', 'Ivan', 'Judy'],    'Age': [24, 27, 22, 32, 29, 35, 26, 30, 23, 28],    'City': ['New York', 'London', 'Paris', 'New York', 'London', 'Paris', 'New York', 'London', 'Paris', 'New York'],    'Score': [85, 92, 78, 95, 88, 70, 91, 83, 75, 90],    'Enrollment_Date': pd.to_datetime(['2020-01-15', '2019-03-22', '2021-07-01', '2018-11-10', '2020-05-01', '2017-09-01', '2021-02-28', '2019-10-05', '2022-04-12', '2020-08-18']),    'Is_Active': [True, False, True, True, False, True, True, False, True, True],    'Comments': ['Good', 'Average', np.nan, 'Excellent', 'Needs Improvement', 'Good', 'Excellent', 'Average', 'Good', 'Excellent']}df = pd.DataFrame(data)print(df) # 原始DataFrame# 1. 单条件筛选:筛选出年龄大于25岁的人# 核心就是生成一个布尔序列,然后用它来索引DataFramefiltered_age = df[df['Age'] > 25]print("n年龄大于25岁的数据:")print(filtered_age)# 2. 筛选特定城市的人filtered_city = df[df['City'] == 'New York']print("n城市是New York的数据:")print(filtered_city)# 3. 筛选布尔列filtered_active = df[df['Is_Active']] # 或者 df[df['Is_Active'] == True]print("n活跃用户数据:")print(filtered_active)# 4. 结合loc进行筛选:这种方式更明确,也更推荐# loc的第一个参数是行选择器,第二个是列选择器filtered_loc = df.loc[df['Score'] > 80, ['Name', 'City', 'Score']]print("n分数大于80,并只显示姓名、城市和分数:")print(filtered_loc)

这基本上就是Pandas筛选的起点。你会发现,所有的复杂筛选,最终都归结于如何构造那个布尔序列。掌握了这个,你几乎就能应对所有数据筛选的场景了。

立即学习“Python免费学习笔记(深入)”;

Pandas DataFrame如何实现多条件筛选,以及AND和OR的运用?

在实际的数据分析中,我们很少会只根据一个条件来筛选数据。通常,我们需要同时满足几个条件,或者满足其中之一

以上就是python中pandas的DataFrame怎么筛选数据_Pandas DataFrame数据筛选技巧的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1371868.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 11:49:34
下一篇 2025年12月14日 11:49:47

相关推荐

  • 使用Pandas和正则表达式处理混合数据类型并转换数字词汇

    本教程详细介绍了如何使用Pandas库高效处理包含混合数据类型(数字词汇和数值)的DataFrame列。文章将重点讲解如何通过正则表达式进行复杂的数据拆分,识别并有条件地将数字词汇转换为数值,并最终将处理后的数据整合到新的结构化列中,以解决数据清洗中常见的格式不一致问题。 在数据分析和处理中,我们经…

    2025年12月14日
    000
  • Python数据处理教程:高效转换带单位的字符串数值与处理缺失值

    本教程旨在指导如何将包含“m”(百万)和“b”(十亿)单位的字符串数值数据转换为浮点数,并妥善处理“damages not recorded”等缺失值。文章将详细解析常见编程错误,如循环结构不当、字符串方法误用及条件判断缺失,并提供一个结构清晰、健壮的python函数实现方案,帮助开发者高效、准确地…

    2025年12月14日
    000
  • Python网页版怎样部署到云服务器_Python网页版云服务器部署全流程指南

    准备云服务器环境:购买并登录Linux服务器,通过SSH连接后安装Python3、pip、虚拟环境、Nginx和Supervisor;2. 上传项目至/var/www/myapp,创建虚拟环境并安装依赖,测试应用运行;3. 安装Gunicorn作为WSGI服务器,使用gunicorn命令启动服务;4…

    2025年12月14日
    000
  • python决策树算法的实现步骤

    答案是实现决策树需依次完成数据预处理、训练集划分、模型构建与训练、预测评估四步,使用scikit-learn库可高效完成,关键在于数据清洗、特征编码、参数设置及结果可视化,全过程强调逻辑清晰与细节把控。 实现Python中的决策树算法并不复杂,关键在于理解每一步的逻辑和操作。以下是基于scikit-…

    2025年12月14日
    000
  • python按行读取文件的方法比较

    readlines()适合小文件且需索引访问;2. for line in f最推荐,内存高效;3. readline()可精确控制但代码繁琐;4. 生成器适合超大文件。日常优先用for循环读取,避免内存浪费。 Python中按行读取文件有多种方法,每种方式在内存使用、速度和适用场景上有所不同。下面…

    2025年12月14日
    000
  • Python特殊传参如何实现

    Python中通过args和kwargs实现灵活传参,args将位置参数打包为元组,kwargs将关键字参数打包为字典,二者可组合使用并遵循普通→默认→args→kwargs的顺序,调用时可用和拆包序列或字典传递参数,广泛应用于装饰器、封装及通用接口设计。 Python中的特殊传参机制让函数调用更灵…

    2025年12月14日
    000
  • python中popitem如何使用

    popitem()方法从字典末尾移除并返回键值对,适用于清空字典场景。示例:my_dict = {‘a’: 1, ‘b’: 2, ‘c’: 3};item = my_dict.popitem()返回(‘c&#8217…

    2025年12月14日
    000
  • python命名关键字参数的使用注意

    命名关键字参数必须通过关键字传递,使用星号*分隔位置参数与关键字参数,确保调用时显式传参,提升函数接口清晰度和安全性。 在Python中,命名关键字参数(keyword-only arguments)是指必须通过关键字传递的参数,不能通过位置传递。这种参数定义方式增强了函数调用的清晰性和安全性。正确…

    2025年12月14日
    000
  • python中mock的断言使用

    答案:Python中使用unittest.mock的断言方法验证模拟对象调用情况,如assert_called_once_with检查调用次数和参数。通过@mock.patch替换目标方法,结合call_count和assert_any_call可验证多次调用的参数,确保函数行为正确。 在Pytho…

    2025年12月14日 好文分享
    000
  • splitlines在python中返回列表

    splitlines()方法按行分割字符串并返回列表,能识别n、rn、r等换行符,默认不保留换行符,传入keepends=True可保留;常用于读取文件、处理用户输入或多行文本解析,与split(‘n’)不同,末尾换行不会产生空字符串,适用于跨平台场景。 在 Python 中…

    2025年12月14日
    000
  • Selenium自动化中循环操作的元素定位与显式等待策略

    本文旨在解决selenium自动化脚本在循环操作中遇到的“元素未找到”问题,特别是当页面动态加载或导航后。我们将深入探讨隐式等待的局限性,并详细介绍如何通过引入selenium的显式等待机制(`webdriverwait`与`expected_conditions`)来确保元素在交互前处于可操作状态…

    2025年12月14日
    000
  • 正则表达式中特殊字符|的匹配陷阱与解决方案

    在正则表达式中,竖线符号`|`被视为逻辑“或”运算符,而非普通字符。当需要匹配字符串中的字面竖线时,必须使用反斜杠“进行转义,即`|`。本文将深入探讨这一常见误区,并通过python `re`模块的示例代码,演示如何正确处理`|`等特殊字符,确保正则表达式的行为符合预期。 理解正则表达式…

    2025年12月14日
    000
  • Python实现Excel文件整文件密码保护的专业指南

    本教程旨在解决python开发中,使用`pandas`生成excel文件后,实现整文件密码保护的难题。针对`openpyxl`和`xlsxwriter`等库仅支持工作表加密的局限,本文推荐并详细讲解如何结合外部工具`msoffice-crypt`,通过python的`subprocess`模块实现跨…

    2025年12月14日
    000
  • Dash应用中通过URI片段实现选项卡间导航与同步

    本文将详细介绍如何在dash多选项卡应用中,利用`dcc.location`组件和回调函数,通过uri片段(url哈希值)实现选项卡之间的导航与状态同步。用户可以通过点击链接激活不同的选项卡,同时确保url与当前活动选项卡状态保持一致,提升用户体验和应用的鲁棒性。 在构建复杂的Dash应用程序时,多…

    2025年12月14日
    000
  • Python库安装故障排除:解决pywinpty和sklearn警告与正确实践

    在Python开发中,通过pip安装库时常会遇到警告信息,即使最终显示“所有需求已满足”,也可能存在潜在问题。本文将深入探讨如何诊断并解决常见的安装警告,特别是针对`pywinpty`的编译依赖问题和`sklearn`的包名弃用警告,并提供一套通用的故障排除流程,确保您的Python环境稳定且库正确…

    2025年12月14日
    000
  • 解决Mypy在cached_property派生类中类型推断不一致的问题

    本文探讨了在使用`functools.cached_property`的派生类时,mypy类型检查器行为不一致的问题。当直接使用`cached_property`时,mypy能正确推断类型错误,但继承后则可能失效。核心原因在于mypy对内置装饰器与自定义装饰器的类型推断机制差异。解决方案是通过将派生…

    2025年12月14日
    000
  • Tkinter 文件与文件夹选择:实现灵活的文件系统路径输入

    tkinter的`filedialog`模块通常将文件和文件夹选择功能分开。本文将介绍一种实用的方法,通过组合`askopenfilename`和`askdirectory`函数,实现一个统一的对话框,允许用户灵活选择文件或文件夹,从而优化用户体验并简化路径输入流程。 引言:Tkinter 文件系统…

    2025年12月14日
    000
  • 在 macOS 上使用 PyObjC 实现 MPEG-4 音频文件的拖放功能

    本文详细介绍了如何在 macos 环境下,利用 pyobjc 框架实现应用程序的拖放功能,特别是针对 mpeg-4 音频文件的处理。文章阐述了正确注册拖放类型(如 `public.audio`、`public.mpeg-4-audio` 及 url/文件 url 类型)的重要性,并提供了从拖放操作中…

    2025年12月14日
    000
  • 使用 Ruff 在指定目录中忽略特定规则

    本文介绍了如何使用 Ruff 工具在 Python 项目中,针对特定目录或文件,忽略指定的规则。通过 pyproject.toml 配置文件中的 per-file-ignores 设置,可以灵活地控制 Ruff 的检查行为,例如忽略测试目录下的文档字符串规范检查。 Ruff 是一款快速的 Pytho…

    2025年12月14日
    000
  • 使用 Python 实现矩阵的行阶梯形变换

    本文详细介绍了如何使用 Python 实现矩阵的行阶梯形变换,重点在于避免使用任何内置函数,并提供详细的代码示例和步骤说明,帮助读者理解算法原理并掌握实现方法。文章还包含了关于部分主元法和数值稳定性的讨论,以及最终代码的输出示例。 矩阵行阶梯形变换的原理 矩阵的行阶梯形(Row Echelon Fo…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信