如何在低内存GPU上运行NLP+Transformers LLM

如何在低内存gpu上运行nlp+transformers llm

本文旨在解决在低内存GPU上运行大型语言模型(LLM)时遇到的内存不足问题。通过模型量化和使用AutoAWQ工具,结合针对特定CUDA版本的兼容性调整,提供了一种可行的解决方案,并详细展示了如何在代码中应用这些优化策略,确保模型能够成功加载并运行在资源受限的环境中.

在尝试运行大型语言模型(LLM)时,尤其是在资源有限的GPU上,经常会遇到内存不足的问题。这通常是因为模型参数量巨大,超出GPU的承载能力。本文将介绍一种有效的解决方案:模型量化,以及如何使用 AutoAWQ 工具来加载和运行量化后的模型。

模型量化简介

模型量化是一种通过降低模型参数的精度来减少模型大小的技术。例如,将原本使用32位浮点数(float32)存储的参数转换为8位整数(int8),从而显著减少模型的内存占用。量化后的模型不仅体积更小,还能提高推理速度,使其更适合在资源受限的设备上运行。

使用 AutoAWQ 加载量化模型

AutoAWQ 是一个专门用于量化和加载模型的库,它能够方便地将大型模型转换为量化版本,并在支持的硬件上高效运行。

1. 安装必要的库

首先,需要安装 transformers 和 accelerate 库,以及特定版本的 AutoAWQ。由于不同环境的CUDA版本可能不同,需要选择与你的CUDA版本兼容的 AutoAWQ 版本。

!pip install -q transformers accelerate!pip install -q -U https://www.php.cn/link/9b67ff5862eb652ed35b0554cb7f62f2/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl

注意: 上面的命令安装的是针对CUDA 11.8的版本。你需要根据你的CUDA版本选择合适的AutoAWQ whl文件。你可以在AutoAWQ的GitHub Releases页面找到其他CUDA版本的whl文件。

2. 加载量化模型和tokenizer

接下来,使用 AutoAWQForCausalLM 的 from_quantized 方法加载量化后的模型。同时,加载对应的tokenizer。

import torchfrom awq import AutoAWQForCausalLMfrom transformers import AutoTokenizermodel_name = 'TheBloke/neural-chat-7B-v3-1-AWQ'  # 选择量化后的模型model = AutoAWQForCausalLM.from_quantized(model_name)tokenizer = AutoTokenizer.from_pretrained(model_name)

注意: TheBloke 在 Hugging Face 上提供了许多量化后的模型,你可以根据你的需求选择合适的模型。

3. 修改推理代码

在推理代码中,需要将输入张量移动到GPU上。这可以通过 .cuda() 方法实现。

def generate_response(system_input, user_input):    # Format the input using the provided template    prompt = f"### System:n{system_input}n### User:n{user_input}n### Assistant:n"    # Tokenize and encode the prompt    inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False).cuda()    # Generate a response    outputs = model.generate(inputs, max_length=1000, num_return_sequences=1)    response = tokenizer.decode(outputs[0], skip_special_tokens=True)    # Extract only the assistant's response    return response.split("### Assistant:n")[-1]

4. 示例运行

# Example usagesystem_input = "You are a math expert assistant. Your mission is to help users understand and solve various math problems. You should provide step-by-step solutions, explain reasonings and give the correct answer."user_input = "calculate 100 + 520 + 60"response = generate_response(system_input, user_input)print(response)

总结与注意事项

选择合适的量化模型: 根据你的GPU内存和性能需求,选择合适的量化模型。更低的量化精度可以进一步减少内存占用,但可能会牺牲一些模型精度。CUDA版本兼容性: 确保安装的 AutoAWQ 版本与你的CUDA版本兼容,否则可能会出现运行时错误。GPU利用率: 监控GPU利用率,确保模型能够充分利用GPU资源。内存管理: 在加载和运行模型时,注意释放不再使用的变量,避免内存泄漏。

通过模型量化和使用 AutoAWQ 工具,可以在低内存GPU上成功运行大型语言模型,为资源受限的环境提供强大的NLP能力。

以上就是如何在低内存GPU上运行NLP+Transformers LLM的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1372132.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 12:04:03
下一篇 2025年12月14日 12:04:13

相关推荐

  • python决策树算法的实现步骤

    答案是实现决策树需依次完成数据预处理、训练集划分、模型构建与训练、预测评估四步,使用scikit-learn库可高效完成,关键在于数据清洗、特征编码、参数设置及结果可视化,全过程强调逻辑清晰与细节把控。 实现Python中的决策树算法并不复杂,关键在于理解每一步的逻辑和操作。以下是基于scikit-…

    2025年12月14日
    000
  • python命名关键字参数的使用注意

    命名关键字参数必须通过关键字传递,使用星号*分隔位置参数与关键字参数,确保调用时显式传参,提升函数接口清晰度和安全性。 在Python中,命名关键字参数(keyword-only arguments)是指必须通过关键字传递的参数,不能通过位置传递。这种参数定义方式增强了函数调用的清晰性和安全性。正确…

    2025年12月14日
    000
  • python中mock的断言使用

    答案:Python中使用unittest.mock的断言方法验证模拟对象调用情况,如assert_called_once_with检查调用次数和参数。通过@mock.patch替换目标方法,结合call_count和assert_any_call可验证多次调用的参数,确保函数行为正确。 在Pytho…

    2025年12月14日 好文分享
    000
  • Langserve中实现动态RAG应用:Langchain链式输入处理教程

    本教程详细阐述如何在langserve中构建支持动态输入的rag(检索增强生成)应用。文章通过langchain的runnable接口,展示如何将用户查询和目标语言作为动态参数传递给检索器和llm提示模板,从而实现灵活、可配置的交互式ai服务。内容涵盖链式组件的构建、langserve路由配置及示例…

    2025年12月14日
    000
  • Selenium自动化中循环操作的元素定位与显式等待策略

    本文旨在解决selenium自动化脚本在循环操作中遇到的“元素未找到”问题,特别是当页面动态加载或导航后。我们将深入探讨隐式等待的局限性,并详细介绍如何通过引入selenium的显式等待机制(`webdriverwait`与`expected_conditions`)来确保元素在交互前处于可操作状态…

    2025年12月14日
    000
  • 正则表达式中特殊字符|的匹配陷阱与解决方案

    在正则表达式中,竖线符号`|`被视为逻辑“或”运算符,而非普通字符。当需要匹配字符串中的字面竖线时,必须使用反斜杠“进行转义,即`|`。本文将深入探讨这一常见误区,并通过python `re`模块的示例代码,演示如何正确处理`|`等特殊字符,确保正则表达式的行为符合预期。 理解正则表达式…

    2025年12月14日
    000
  • Python实现Excel文件整文件密码保护的专业指南

    本教程旨在解决python开发中,使用`pandas`生成excel文件后,实现整文件密码保护的难题。针对`openpyxl`和`xlsxwriter`等库仅支持工作表加密的局限,本文推荐并详细讲解如何结合外部工具`msoffice-crypt`,通过python的`subprocess`模块实现跨…

    2025年12月14日
    000
  • Dash应用中通过URI片段实现选项卡间导航与同步

    本文将详细介绍如何在dash多选项卡应用中,利用`dcc.location`组件和回调函数,通过uri片段(url哈希值)实现选项卡之间的导航与状态同步。用户可以通过点击链接激活不同的选项卡,同时确保url与当前活动选项卡状态保持一致,提升用户体验和应用的鲁棒性。 在构建复杂的Dash应用程序时,多…

    2025年12月14日
    000
  • Python库安装故障排除:解决pywinpty和sklearn警告与正确实践

    在Python开发中,通过pip安装库时常会遇到警告信息,即使最终显示“所有需求已满足”,也可能存在潜在问题。本文将深入探讨如何诊断并解决常见的安装警告,特别是针对`pywinpty`的编译依赖问题和`sklearn`的包名弃用警告,并提供一套通用的故障排除流程,确保您的Python环境稳定且库正确…

    2025年12月14日
    000
  • 解决Mypy在cached_property派生类中类型推断不一致的问题

    本文探讨了在使用`functools.cached_property`的派生类时,mypy类型检查器行为不一致的问题。当直接使用`cached_property`时,mypy能正确推断类型错误,但继承后则可能失效。核心原因在于mypy对内置装饰器与自定义装饰器的类型推断机制差异。解决方案是通过将派生…

    2025年12月14日
    000
  • Tkinter 文件与文件夹选择:实现灵活的文件系统路径输入

    tkinter的`filedialog`模块通常将文件和文件夹选择功能分开。本文将介绍一种实用的方法,通过组合`askopenfilename`和`askdirectory`函数,实现一个统一的对话框,允许用户灵活选择文件或文件夹,从而优化用户体验并简化路径输入流程。 引言:Tkinter 文件系统…

    2025年12月14日
    000
  • 在 macOS 上使用 PyObjC 实现 MPEG-4 音频文件的拖放功能

    本文详细介绍了如何在 macos 环境下,利用 pyobjc 框架实现应用程序的拖放功能,特别是针对 mpeg-4 音频文件的处理。文章阐述了正确注册拖放类型(如 `public.audio`、`public.mpeg-4-audio` 及 url/文件 url 类型)的重要性,并提供了从拖放操作中…

    2025年12月14日
    000
  • 使用 Ruff 在指定目录中忽略特定规则

    本文介绍了如何使用 Ruff 工具在 Python 项目中,针对特定目录或文件,忽略指定的规则。通过 pyproject.toml 配置文件中的 per-file-ignores 设置,可以灵活地控制 Ruff 的检查行为,例如忽略测试目录下的文档字符串规范检查。 Ruff 是一款快速的 Pytho…

    2025年12月14日
    000
  • Dash Python:实现多标签页应用中的内部链接导航

    本教程详细介绍了如何在dash多标签页应用中,通过点击页面内的超链接来激活不同的标签页。核心方法是利用`dcc.location`组件管理uri片段(hash),并结合回调函数同步`dcc.location`的`hash`属性与`dbc.tabs`的`active_tab`属性,从而实现基于url状…

    2025年12月14日
    000
  • Python中临时音频文件删除策略:利用内存文件对象解决文件占用问题

    本文旨在解决python中删除临时音频文件时因文件占用导致`os.remove()`失败的问题,尤其是在windows环境下。核心方案是利用`io.bytesio`创建内存文件对象,将音频数据加载到内存而非磁盘,从而避免文件被锁定,确保临时文件能够顺利删除。教程将提供详细的实现步骤和代码示例,并探讨…

    2025年12月14日
    000
  • 在Pandas DataFrame中高效生成重复与递增序列

    本教程旨在详细介绍在Pandas DataFrame中生成特定数值序列的多种方法,包括创建重复值列和对应的递增序列列。我们将从基于列表的循环构建,逐步深入到使用NumPy矢量化操作以及Pandas原生`MultiIndex.from_product`等更高效、更具Pythonic风格的解决方案,并提…

    2025年12月14日
    000
  • python中的Locust是什么

    Locust是基于Python的开源性能测试工具,通过编写Python脚本定义用户行为,利用协程实现高并发,支持实时Web界面监控和分布式部署,适用于需自定义逻辑的Web应用负载测试。 Locust 是一个基于 Python 的开源性能测试工具,主要用于模拟大量用户并发访问系统,从而测试 Web 应…

    2025年12月14日
    000
  • Dash dbc.Tabs 高级交互:通过内部链接实现标签页动态切换

    本教程旨在详细阐述如何在 dash 应用程序中,特别是使用 `dash-bootstrap-components` 的 `dbc.tabs` 组件时,通过内部链接实现不同标签页的动态切换。核心方法是利用 `dcc.location` 组件监听 uri 片段(hash),并通过回调函数将 url ha…

    2025年12月14日
    000
  • NumPy高级索引与布尔索引:避免赋值失效的正确姿势

    本文深入探讨了在numpy中使用链式高级索引和布尔索引进行赋值时常见的陷阱。当对 `b[i_b][ij_b] = true` 这样的表达式进行赋值操作时,由于高级索引返回的是数据副本而非视图,导致原始数组 `b` 未被修改。文章将详细解释这一机制,并提供一种高效的向量化解决方案,即直接使用 `b[i…

    2025年12月14日
    000
  • Python加密Excel文件:实现文件级密码保护

    本教程旨在解决使用python为excel文件设置文件级密码保护的难题。针对`openpyxl`和`xlsxwriter`等库仅支持工作表加密的局限性,我们推荐结合`msoffice-crypt`工具,通过创建excel文件后进行后处理加密,从而实现对整个`.xlsx`文件的安全保护,适用于需要通过…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信