如何在 Jupyter Notebook 中运行 Python

启动Jupyter Notebook后创建Python 3文件,在单元格输入代码如print(“Hello, Jupyter!”),用Shift+Enter运行并查看输出,掌握快捷键提升操作效率,确保环境安装所需库,可保存为.ipynb或导出为.py、HTML等格式。

如何在 jupyter notebook 中运行 python

在 Jupyter Notebook 中运行 Python 代码非常直观,适合数据分析、教学和快速原型开发。你只需要启动 Jupyter 并在一个代码单元格中输入 Python 语句,然后执行即可。

启动 Jupyter Notebook

打开终端(Windows 上可用命令提示符或 PowerShell),输入以下命令:

jupyter notebook

这会启动服务器并在浏览器中打开 Jupyter 的界面,默认地址是 http://localhost:8888。你可以通过该页面创建新的 Notebook 或打开已有文件。

创建并运行 Python 代码单元格

点击“New”按钮,选择“Python 3”内核,新建一个 Notebook。你会看到一个空白的代码单元格。

立即学习“Python免费学习笔记(深入)”;

在单元格中输入任意 Python 代码,例如:

print(“Hello, Jupyter!”)

按下 Shift + Enter 或点击工具栏的“Run”按钮来执行该单元格。输出会直接显示在单元格下方。

常用操作与技巧

掌握几个快捷键能显著提升效率:

Shift + Enter:运行当前单元格并跳转到下一个 Ctrl + Enter:运行当前单元格但不移动 Alt + Enter:运行当前单元格并在下方插入新单元格 ab(命令模式下):在当前单元格上方或下方插入新单元格 d, d(连按两次 d):删除当前单元格

确保你在正确的内核环境下安装了所需库,比如使用 pip 或 conda 安装 pandas、numpy 等,否则运行时会报错模块未找到。

保存与导出 Notebook

Jupyter 会自动定期保存你的工作,也可以手动点击“Save”图标或按 Ctrl + S 保存为 .ipynb 文件。

若要分享或转换格式,可通过“File → Download as”导出为 Python 脚本(.py)、HTML、PDF 等格式。

基本上就这些。只要环境配置好,写和运行 Python 就像在交互式笔记本里做实验一样自然。

以上就是如何在 Jupyter Notebook 中运行 Python的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1373105.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 12:54:16
下一篇 2025年12月14日 12:54:28

相关推荐

  • python怎么对列表进行排序_python列表排序方法详解

    Python列表排序有两种方法:list.sort()原地修改列表并返回None,适用于无需保留原列表的场景;sorted()函数返回新列表,不改变原始数据,适合需保留原序或处理不可变对象的情况。两者均使用稳定的Timsort算法,默认升序排列,支持通过key参数自定义排序规则(如按长度、属性或字典…

    2025年12月14日
    000
  • python如何获取当前日期和时间_python获取系统日期时间方法详解

    Python使用datetime模块获取当前日期和时间,常用datetime.datetime.now()返回本地日期时间对象,date.today()获取日期,time()提取时间,strftime()格式化输出,fromtimestamp()将时间戳转为datetime对象,strptime()…

    2025年12月14日
    000
  • 解决Apache Beam中PyArrow Snyk漏洞报告的策略

    本文旨在解决在使用Apache Beam时,Snyk报告PyArrow库存在“不可信数据反序列化”漏洞(SNYK-PYTHON-PYARROW-6052811)导致构建失败的问题。核心解决方案是针对Apache Beam 2.52.0及更高版本,通过安装pyarrow_hotfix库来有效缓解此漏洞…

    2025年12月14日
    000
  • python如何判断一个路径是文件还是文件夹_python os.path判断路径类型的常用函数

    使用os.path.isfile()和os.path.isdir()判断路径类型,结合os.path.exists()检查存在性,可有效区分文件、文件夹及符号链接,并通过异常处理和日志记录避免程序出错。 判断一个路径是文件还是文件夹,Python 提供了 os.path 模块,它包含了一系列函数来检…

    2025年12月14日
    000
  • Snakemake在Slurm环境下实时输出与规则优化:深度教程

    本文深入探讨了Snakemake在Slurm集群中运行Python脚本时,输出无法实时显示的问题,并提供了强制刷新标准输出的解决方案。更重要的是,文章通过一个具体的案例,详细阐述了Snakemake规则设计的最佳实践,包括规则泛化、输出完整性、动态输入与参数配置、以及shell指令的推荐用法,旨在帮…

    2025年12月14日
    000
  • Python 单继承与多继承的区别

    单继承通过线性层级实现清晰的“is-a”关系,适合简单复用;多继承支持类从多个父类继承功能,借助Mixin模式按需组合能力,提升灵活性,但需依赖C3算法确定MRO以解决方法调用顺序,避免菱形继承歧义,实际开发中应优先单继承,谨慎使用多继承并配合super()和组合模式。 Python的继承机制,无论…

    2025年12月14日
    000
  • Python Pandas:深度解析多层嵌套JSON数据的扁平化处理

    本文详细介绍了如何使用Python Pandas库有效地将多层嵌套的复杂JSON数据扁平化为单一的表格结构。通过结合json_normalize函数的record_path、meta参数,以及后续的数据重塑操作(如explode和列名处理),本教程提供了一种将深层嵌套信息提取并整合到一行的专业方法,…

    2025年12月14日
    000
  • Python 数据分块处理大数据集

    分块处理大数据可避免内存溢出。使用pandas的chunksize参数可逐块读取大型CSV文件,适合聚合清洗;通过生成器可自定义分块逻辑,实现懒加载;结合joblib能并行处理独立数据块,提升计算效率。关键在于根据数据规模和任务选择合适策略,并及时释放内存、保存中间结果。 处理大数据集时,直接将整个…

    2025年12月14日
    000
  • Python 实战:个人理财可视化工具

    答案:Python通过Pandas和Plotly等库将分散的财务数据清洗、分类并可视化,帮助用户直观分析收支趋势、发现消费黑洞、追踪资产变化,从而提升财务掌控力。 Python能帮助我们构建强大的个人理财可视化工具,将复杂的财务数据转化为直观图表,帮助我们洞察收支模式,做出更明智的财务决策。这不仅仅…

    2025年12月14日
    000
  • Python 类中的私有属性与私有方法

    Python通过双下划线实现“私有”属性和方法,本质是名称混淆而非强制私有,目的是避免子类冲突并提示内部使用,体现“我们都是成年人”的设计哲学。 Python中所谓的“私有”属性和方法,其实并非像其他语言那样提供严格的访问控制。它更多是一种约定和一种巧妙的名称混淆(name mangling)机制,…

    2025年12月14日
    000
  • Linux 用户的 Python 环境搭建流程

    检查并升级 Python 版本,确保满足开发需求;2. 使用 venv 创建独立虚拟环境避免依赖冲突;3. 在虚拟环境中安装第三方包并导出依赖列表;4. 通过激活与退出环境及删除目录实现安全清理。 Linux 系统自带 Python,但为了开发需要,通常要配置独立且可控的 Python 环境。以下是…

    2025年12月14日
    000
  • Pandas数据框中按组比较相邻行数据并生成新列的教程

    本教程详细介绍了如何在Pandas数据框中,根据特定分组(如Race_ID),比较当前行C_k列的值与下一行adv列的值。我们将探讨两种高效的方法来找出满足条件的第一个C_k值,并将其填充到一个新列C_t中,同时处理无匹配项时的默认值设定,以实现复杂的跨行条件逻辑。 引言:问题背景与目标 在数据分析…

    2025年12月14日
    000
  • 利用Prisma客户端扩展在NestJS中实现数据库操作后置逻辑

    本文探讨了在NestJS应用中,如何利用Prisma客户端扩展实现类似Django Signals的数据库操作后置钩子。通过拦截create、update或delete等数据库操作,开发者可以在数据持久化成功后执行自定义逻辑,如发送通知或更新缓存,从而避免将这些交叉关注点直接耦合在业务逻辑或API端…

    2025年12月14日
    000
  • Python 延迟加载与按需计算

    延迟加载与按需计算通过推迟执行节省资源,利用属性、生成器和cached_property实现高效优化。 在 Python 中,延迟加载(Lazy Loading)和按需计算(On-demand Computation)是一种优化策略,用于推迟对象的创建或值的计算,直到真正需要时才执行。这种方式能有效…

    2025年12月14日
    000
  • python如何使用pillow库处理图片_python pillow图像处理库的基本操作

    Pillow是Python中处理图片的首选库,提供直观API,支持打开、编辑、保存等操作,适用于调整尺寸、裁剪、旋转、滤镜应用等常见任务。安装简单,通过pip install Pillow即可完成。核心模块为Image,常用功能包括:1. 打开并显示图片,支持格式、尺寸、模式查询及错误处理;2. 调…

    2025年12月14日
    000
  • python如何优雅地拼接字符串路径_python os.path.join拼接路径的正确方法

    最推荐使用os.path.join()或pathlib模块拼接路径,因它们能自动处理不同操作系统的分隔符差异并规范路径。os.path.join()是传统方法,可智能合并路径片段、避免重复斜杠,并在遇到绝对路径时重新开始拼接;而pathlib自Python 3.4引入,提供面向对象的现代语法,支持用…

    2025年12月14日
    000
  • python中如何自定义一个异常类?

    自定义异常类需继承Exception,可添加属性和方法以提供详细上下文信息。如InsufficientFundsError携带金额数据并重写__str__,提升错误可读性与处理精度。通过创建基类异常(如MyAppError)构建层次化结构,集中管理于exceptions.py,实现细粒度捕获与统一处…

    2025年12月14日
    000
  • Python 3.x 与 2.x 的差异与兼容性问题

    Python 3与2.x主要差异包括:1. print变为函数;2. 字符串默认Unicode,bytes分离;3. 除法返回浮点数;4. 模块重命名如urllib2拆分;5. 兼容建议用__future__导入和six库。 Python 3.x 与 2.x 存在显著差异,这些变化旨在提升语言的清晰…

    2025年12月14日
    000
  • python中__str__和__repr__方法有什么区别?

    __str__用于生成人类可读的字符串,适合展示给用户;__repr__则生成明确无歧义的开发者用字符串,理想情况下可重构对象。两者分工明确,建议优先定义__repr__以保障调试信息完整,再根据需要定义__str__提供友好显示。若只选其一,应优先实现__repr__。 在Python里, __s…

    2025年12月14日
    000
  • Snakemake规则在Slurm模式下Python输出实时显示与最佳实践

    在Snakemake的Slurm模式下,Python脚本的实时输出(如print()语句)可能因标准输出缓冲而延迟显示。本文将探讨导致此问题的原因,提供通过刷新标准输出来即时解决的方法,并重点介绍更深层次的Snakemake规则重构最佳实践,包括细化规则粒度、避免内部循环、优化输入/输出处理以及利用…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信