使用PyTorch训练神经网络计算坐标平方和

使用pytorch训练神经网络计算坐标平方和

本文详细阐述了如何使用PyTorch构建并训练一个神经网络,使其能够根据输入的二维坐标[x, y, 1]计算并输出x^2 + y^2。文章首先分析了初始实现中遇到的收敛困难,随后深入探讨了通过输入数据标准化、增加训练周期以及调整批量大小等关键优化策略来显著提升模型性能和收敛速度,并提供了完整的优化代码示例及原理分析。

引言:构建神经网络计算坐标平方和

深度学习实践中,我们经常需要训练神经网络来拟合特定的数学函数。本教程的目标是构建一个PyTorch神经网络,其输入为三维向量[x, y, 1](其中x和y是二维坐标),输出为这些坐标的平方和,即x^2 + y^2。尽管这个函数在数学上相对简单,但在神经网络的训练过程中,若不注意数据预处理和超参数设置,仍可能遇到模型难以收敛、损失值居高不下的问题。

原始实现与挑战分析

以下是最初尝试构建该神经网络的代码片段。该实现使用了一个带有单个隐藏层的全连接网络,并尝试了标准的训练流程。

import torch import torch.nn as nnimport numpy as npfrom torch.utils.data import TensorDataset, DataLoaderimport torch.optim device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 原始特征数据,包含大量在[-15, 15]范围内的坐标features = torch.tensor([[8.3572,-11.3008,1],[6.2795,-12.5886,1],[4.0056,-13.4958,1]                         ,[1.6219,-13.9933,1],[-0.8157,-14.0706,1],[-3.2280,-13.7250,1]                         ,[-5.5392,-12.9598,1],[-7.6952,-11.8073,1],[-9.6076,-10.3035,1],                         [-11.2532,-8.4668,1],[-12.5568,-6.3425,1],[-13.4558,-4.0691,1],                         [-13.9484,-1.7293,1],[-14.0218,0.7224,1],[-13.6791,3.1211,1],                         [-12.9064,5.4561,1],[-11.7489,7.6081,1],[-10.2251,9.5447,1],                         [5.4804,12.8044,1],[7.6332,11.6543,1],[9.5543,10.1454,1],                         [11.1890,8.3117,1],[12.4705,6.2460,1],[13.3815,3.9556,1],                         [13.8733,1.5884,1],[13.9509,-0.8663,1],[13.6014,-3.2793,1],                         [12.8572,-5.5526,1],[11.7042,-7.7191,1],[10.1761,-9.6745,1],                         [-8.4301,11.1605,1],[-6.3228,12.4433,1],[-4.0701,13.3401,1],                         [-1.6816,13.8352,1],[0.7599,13.9117,1],[3.1672,13.5653,1]]).to(device)# 计算标签:x^2 + y^2labels = []for i in range(features.shape[0]):    label=(features[i][0])**2+(features[i][1])**2    labels.append(label)labels = torch.tensor(labels).to(device)# 定义网络结构num_input ,num_hidden,num_output = 3,64,1net = nn.Sequential(    nn.Linear(num_input,num_hidden),    nn.Linear(num_hidden,num_output)).to(device)# 权重初始化(偏置初始化未被应用)def init_weights(m):    if type(m) == nn.Linear:        nn.init.xavier_normal_(m.weight)net.apply(init_weights)loss = nn.MSELoss()num_epochs = 10batch_size = 6lr=0.001trainer = torch.optim.RAdam(net.parameters(),lr=lr)dataset = TensorDataset(features,labels)data_loader = DataLoader(dataset,batch_size=batch_size,shuffle=True)# 训练循环for i in range (num_epochs):    for X,y in data_loader:        y_hat = net(X)        l = loss(y_hat,y.reshape(y_hat.shape))        trainer.zero_grad()        l.backward()        trainer.step()    with torch.no_grad():        print(f"Epoch {i+1}, Loss: {l.item():.4f}")

运行上述代码会发现,经过10个epoch的训练,损失值仍然很高,模型未能有效学习到目标函数。这通常是由以下几个原因造成的:

输入数据未标准化: 原始的x和y坐标范围较大(约-15到15),这可能导致神经网络在训练初期面临较大的梯度,使得优化器难以找到合适的更新方向,甚至引发梯度爆炸或消失。训练周期不足: 仅10个epoch对于一个需要学习非线性关系的神经网络来说,可能不足以使其充分收敛。批量大小选择: 批量大小的选择会影响训练的稳定性和收敛速度。过大可能导致泛化能力下降,过小可能导致训练不稳定。

优化策略与改进实践

为了解决上述问题并提高模型的收敛性,我们可以采取以下关键优化策略:

1. 数据预处理:输入特征标准化

标准化(Standardization)是将数据转换成均值为0、标准差为1的分布,是深度学习中常用的数据预处理技术。它有助于:

加速收敛: 标准化后的数据能使损失函数更“平滑”,避免在某些维度上梯度过大或过小,从而帮助优化器更快地找到最优解。防止梯度问题: 减小了输入特征之间的尺度差异,有助于缓解梯度消失或爆炸的问题。

我们可以对features的前两列(即x和y坐标)进行标准化处理:

mean = features[:,:2].mean(dim=0)std = features[:,:2].std(dim=0)features[:,:2] = (features[:,:2] - mean) / std

注意,这里只对x和y坐标进行了标准化,因为第三列是一个常数1,它不参与计算x^2+y^2,并且作为偏置项的输入,通常不需要标准化。

2. 训练参数调整:增加Epochs与调整Batch Size

增加训练周期(num_epochs): 更多的训练周期意味着模型有更多机会遍历整个数据集并调整其权重。对于复杂的函数拟合,增加训练周期通常是必要的。调整批量大小(batch_size): 批量大小的选择是一个经验性的过程。较小的批量通常能提供更频繁的权重更新,可能有助于跳出局部最优,但也可能导致训练过程更加震荡。对于本例,适当减小批量大小可能会带来更好的收敛效果。

根据经验,我们可以将num_epochs增加到100,并将batch_size调整为2:

num_epochs = 100batch_size = 2

整合优化后的PyTorch代码

将上述优化策略整合到原始代码中,得到以下改进后的实现:

import torch import torch.nn as nnimport numpy as npfrom torch.utils.data import TensorDataset, DataLoaderimport torch.optim device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")features = torch.tensor([[8.3572,-11.3008,1],[6.2795,-12.5886,1],[4.0056,-13.4958,1]                         ,[1.6219,-13.9933,1],[-0.8157,-14.0706,1],[-3.2280,-13.7250,1]                         ,[-5.5392,-12.9598,1],[-7.6952,-11.8073,1],[-9.6076,-10.3035,1],                         [-11.2532,-8.4668,1],[-12.5568,-6.3425,1],[-13.4558,-4.0691,1],                         [-13.9484,-1.7293,1],[-14.0218,0.7224,1],[-13.6791,3.1211,1],                         [-12.9064,5.4561,1],[-11.7489,7.6081,1],[-10.2251,9.5447,1],                         [5.4804,12.8044,1],[7.6332,11.6543,1],[9.5543,10.1454,1],                         [11.1890,8.3117,1],[12.4705,6.2460,1],[13.3815,3.9556,1],                         [13.8733,1.5884,1],[13.9509,-0.8663,1],[13.6014,-3.2793,1],                         [12.8572,-5.5526,1],[11.7042,-7.7191,1],[10.1761,-9.6745,1],                         [-8.4301,11.1605,1],[-6.3228,12.4433,1],[-4.0701,13.3401,1],                         [-1.6816,13.8352,1],[0.7599,13.9117,1],[3.1672,13.5653,1]]).to(device)# --- 优化点1: 输入数据标准化 ---mean = features[:,:2].mean(dim=0)std = features[:,:2].std(dim=0)features[:,:2] = (features[:,:2] - mean) / stdlabels = []for i in range(features.shape[0]):    label=(features[i][0])**2+(features[i][1])**2    labels.append(label)labels = torch.tensor(labels).to(device)num_input ,num_hidden,num_output = 3,64,1net = nn.Sequential(    nn.Linear(num_input,num_hidden),    nn.Linear(num_hidden,num_output)).to(device)def init_weights(m):    if type(m) == nn.Linear:        nn.init.xavier_normal_(m.weight)net.apply(init_weights)loss = nn.MSELoss()# --- 优化点2: 调整训练周期和批量大小 ---num_epochs = 100 # 增加训练周期batch_size = 2   # 调整批量大小lr=0.001trainer = torch.optim.RAdam(net.parameters(),lr=lr)dataset = TensorDataset(features,labels)data_loader = DataLoader(dataset,batch_size=batch_size,shuffle=True)for i in range (num_epochs):    for X,y in data_loader:        y_hat = net(X)        l = loss(y_hat,y.reshape(y_hat.shape))        trainer.zero_grad()        l.backward()        trainer.step()    with torch.no_grad():        # 打印每个epoch结束时的损失值        print(f"Epoch {i+1}, Loss: {l.item():.4f}")

运行上述优化后的代码,你会发现模型能够显著降低损失值,并最终收敛到一个较低的误差水平。

改进效果与原理分析

数据标准化:通过将输入特征缩放到相似的范围,我们有效地帮助了优化器。在未标准化的数据上,如果某个特征的数值范围远大于其他特征,其对应的权重更新可能会主导整个梯度下降过程,导致训练不稳定。标准化消除了这种尺度差异,使得每个特征对损失函数的贡献更加均衡,从而加速了收敛。增加训练周期:x^2 + y^2是一个非线性函数,尽管只有一个隐藏层,模型仍需要足够的时间来学习和近似这个复杂的映射关系。100个epoch为模型提供了充足的学习机会,使其能够逐步调整权重以更好地拟合数据。调整批量大小:将batch_size从6调整到2,使得模型在每个epoch内进行更频繁的权重更新。虽然这可能导致每次更新的梯度估计噪声更大,但在某些情况下,这种频繁更新有助于模型更快地探索损失函数的曲面,避免陷入较差的局部最优。

进一步的优化建议

除了上述改进,在实际的神经网络训练中,还可以考虑以下优化策略:

学习率调度(Learning Rate Scheduling):在训练过程中动态调整学习率,例如从较大的学习率开始,然后逐渐减小。这有助于在训练初期快速收敛,并在后期更精细地调整权重。激活函数选择:虽然本例中没有显式指定隐藏层的激活函数(默认是线性),但对于更复杂的非线性问题,选择ReLU、Sigmoid或Tanh等非线性激活函数是至关重要的。更复杂的网络结构:如果目标函数更加复杂,可能需要增加隐藏层的数量或每层神经元的数量。正则化技术:如L1/L2正则化或Dropout,可以帮助防止模型过拟合,提高泛化能力。不同的优化器:虽然RAdam是一个强大的优化器,但在某些情况下,Adam、SGD with Momentum等也可能表现出色。

总结

本教程通过一个具体的例子,展示了如何使用PyTorch训练一个神经网络来拟合x^2 + y^2函数。核心 takeaway 是,成功的神经网络训练不仅仅依赖于网络架构本身,更离不开有效的数据预处理细致的超参数调优。通过对输入数据进行标准化、增加训练周期以及调整批量大小,我们能够显著改善模型的收敛性能,使其能够有效学习并拟合目标函数。这些实践经验对于解决更广泛的深度学习问题同样具有指导意义。

以上就是使用PyTorch训练神经网络计算坐标平方和的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1374312.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 14:02:37
下一篇 2025年12月14日 14:02:49

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    300
  • 如何用 CSS Paint API 实现倾斜的斑马线间隔圆环?

    实现斑马线边框样式:探究 css paint api 本文将探究如何使用 css paint api 实现倾斜的斑马线间隔圆环。 问题: 给定一个有多个圆圈组成的斑马线图案,如何使用 css 实现倾斜的斑马线间隔圆环? 答案: 立即学习“前端免费学习笔记(深入)”; 使用 css paint api…

    2025年12月24日
    000
  • 如何使用CSS Paint API实现倾斜斑马线间隔圆环边框?

    css实现斑马线边框样式 想定制一个带有倾斜斑马线间隔圆环的边框?现在使用css paint api,定制任何样式都轻而易举。 css paint api 这是一个新的css特性,允许开发人员创建自定义形状和图案,其中包括斑马线样式。 立即学习“前端免费学习笔记(深入)”; 实现倾斜斑马线间隔圆环 …

    2025年12月24日
    100

发表回复

登录后才能评论
关注微信