
本教程详细指导如何使用 Python Pandas 库高效合并来自多个 Excel 文件中指定工作表的数据。文章将解释如何遍历文件目录、正确加载 Excel 文件、识别并解析特定工作表,并将来自不同文件的同名工作表数据智能地整合到一个 Pandas DataFrame 字典中,同时提供完整的示例代码和注意事项,帮助用户避免常见的 AttributeError 并优化数据处理流程。
引言
在日常数据分析和报告工作中,我们经常需要处理大量分散在多个 excel 文件中的数据。这些文件可能包含多个工作表,并且我们需要从中提取特定工作表的数据进行整合。手动操作不仅效率低下,还容易出错。python 的 pandas 库提供了强大的数据处理能力,能够自动化这一复杂过程。本文将深入探讨如何利用 pandas 优雅地解决多 excel 文件、多工作表的数据合并问题。
环境准备
在开始之前,请确保您的 Python 环境中已安装 Pandas 和用于读取 Excel 文件的引擎库(如 openpyxl 或 xlrd)。如果尚未安装,可以通过以下命令进行安装:
pip install pandas openpyxl xlrd
理解常见错误:AttributeError: ‘str’ object has no attribute ‘sheet_names’
在处理 Excel 文件时,一个常见的错误是 AttributeError: ‘str’ object has no attribute ‘sheet_names’。这个错误通常发生在尝试对一个文件路径字符串(str 类型)直接调用 sheet_names 方法时。sheet_names 是 pandas.ExcelFile 对象的属性,而不是文件路径字符串的属性。
错误原因示例:
path = "your_excel_file.xlsx"# 错误:path 是字符串,没有 sheet_names 属性for sheet_name in path.sheet_names: pass
正确做法:
立即学习“Python免费学习笔记(深入)”;
在使用 sheet_names 之前,必须先将文件路径传递给 pd.ExcelFile() 构造函数,创建一个 ExcelFile 对象。
file_path = "your_excel_file.xlsx"xls = pd.ExcelFile(file_path) # 创建 ExcelFile 对象for sheet_name in xls.sheet_names: # 现在可以访问 sheet_names 属性 pass
理解这一点是避免此类错误的关键,也是本文核心解决方案的基础。
核心解决方案:使用 Pandas 合并多文件多工作表数据
我们的目标是遍历指定目录下的所有 Excel 文件,识别并合并其中符合特定条件(例如,名称匹配)的工作表数据。最终,我们将把来自不同文件的同名工作表数据合并成一个独立的 DataFrame,并存储在一个字典中。
解决方案概述
指定根目录:确定存放 Excel 文件的最上层目录。遍历文件系统:使用 os.walk 遍历根目录及其所有子目录,查找 Excel 文件。加载 Excel 文件:对每个找到的 Excel 文件,使用 pd.ExcelFile() 加载。获取工作表名称:通过 xls.sheet_names 获取当前 Excel 文件中所有工作表的名称。条件筛选与解析:根据预设条件(如工作表名称)筛选工作表,并使用 xls.parse() 将其解析为 Pandas DataFrame。数据整合:将来自不同文件的同名工作表数据收集起来,并使用 pd.concat() 进行纵向合并。存储结果:将合并后的 DataFrame 存储在一个字典中,以工作表名称作为键。
示例代码
以下是一个完整的 Python 函数,实现了上述数据合并逻辑:
import osimport pandas as pddef merge_excel_sheets(base_path, target_sheet_names=None): """ 合并指定路径下多个Excel文件中符合条件的工作表。 Args: base_path (str): 包含Excel文件的根目录路径。 target_sheet_names (list, optional): 一个列表,包含需要合并的工作表名称。 如果为None,则合并所有非排除工作表。 Returns: dict: 键为工作表名称,值为合并后的DataFrame的字典。 每个DataFrame包含来自所有Excel文件中同名工作表的数据。 """ # 临时存储每个工作表名称下的所有DataFrame列表 all_sheet_data_lists = {} print(f"开始遍历目录: {base_path}") # 遍历指定目录及其子目录 for root, _, files in os.walk(base_path): for fname in files: file_path = os.path.join(root, fname) # 确保只处理Excel文件(.xlsx 或 .xls 扩展名) if fname.endswith(('.xlsx', '.xls')): try: # 使用 pd.ExcelFile 加载 Excel 文件,而不是直接操作字符串路径 xls = pd.ExcelFile(file_path) print(f"n正在处理文件: {fname}") # 遍历当前Excel文件中的所有工作表 for sheet_name in xls.sheet_names: # 根据 target_sheet_names 筛选工作表 if target_sheet_names and sheet_name not in target_sheet_names: continue # 跳过不符合条件的工作表 print(f" - 发现并处理工作表: '{sheet_name}'") try: # 解析指定工作表到 DataFrame df = xls.parse(sheet_name) # 将当前 DataFrame 添加到对应工作表名称的列表中 if sheet_name not in all_sheet_data_lists: all_sheet_data_lists[sheet_name] = [] all_sheet_data_lists[sheet_name].append(df) except Exception as e: print(f" - 警告: 无法解析工作表 '{sheet_name}' 在文件 '{fname}' 中: {e}") continue except Exception as e: print(f" - 错误: 无法加载Excel文件 '{fname}': {e}") continue else: print(f" - 跳过非Excel文件: {fname}") # 将每个工作表名称下的所有DataFrame列表合并成一个DataFrame final_merged_dict = {} for sheet_name, df_list in all_sheet_data_lists.items(): if df_list: # 使用 pd.concat 纵向合并所有 DataFrame final_merged_dict[sheet_name] = pd.concat(df_list, ignore_index=True) print(f"n成功合并工作表 '{sheet_name}' 的数据。总行数: {len(final_merged_dict[sheet_name])}") else: print(f"警告: 工作表 '{sheet_name}' 未找到任何数据进行合并。") return final_merged_dict# --- 使用示例 ---# 请将 'your/excel/files/path' 替换为你的Excel文件所在的实际路径# 确保该路径下包含多个Excel文件,且这些文件内有同名的工作表。excel_directory_path = 'your/excel/files/path' # 示例:合并名为 'Portfolios' 和 'SP Search Term Req' 的工作表# 如果希望合并所有工作表,可以将 target_sheet_names 设置为 Nonetarget_sheets_to_merge = ['Portfolios', 'SP Search Term Req'] # 调用函数执行合并操作merged_dataframes = merge_excel_sheets(excel_directory_path, target_sheet_names=target_sheets_to_merge)# 打印合并结果的概览if merged_dataframes: print("n--- 合并结果概览 ---") for sheet_name, df in merged_dataframes.items(): print(f"n工作表 '{sheet_name}' 合并后的数据 (前5行):") print(df.head()) print(f"总行数: {len(df)}")else: print("n未找到符合条件的工作表数据进行合并。")# 如果需要将所有合并后的DataFrame进一步整合成一个大的DataFrame# all_combined_dfs = list(merged_dataframes.values())# if all_combined_dfs:# final_single_df = pd.concat(all_combined_dfs, ignore_index=True)# print("n所有符合条件的工作表合并成一个大DataFrame的概览 (前5行):")# print(final_single_df.head())# print(f"总行数: {len(final_single_df)}")
代码详解
import os 和 import pandas as pd: 导入所需的 os 模块用于文件系统操作,以及 pandas 模块用于数据处理。merge_excel_sheets(base_path, target_sheet_names=None) 函数:base_path: Excel 文件所在的根目录路径。target_sheet_names: 一个可选列表,包含您希望合并的工作表名称。如果为 None,则会尝试合并所有发现的工作表(请注意,这可能会导致大量数据)。all_sheet_data_lists = {}: 这是一个字典,用于临时存储。它的键是工作表名称,值是一个列表,该列表包含了来自不同 Excel 文件的同名工作表的 DataFrame。os.walk(base_path): 这是一个生成器,它会递归地遍历 base_path 下的所有目录和文件。每次迭代返回一个三元组 (root, dirs, files),其中 root 是当前目录的路径,dirs 是 root 下的子目录列表,files 是 root 下的文件列表。os.path.join(root, fname): 用于构建文件的完整路径,确保跨平台兼容性。fname.endswith((‘.xlsx’, ‘.xls’)): 检查文件扩展名,确保只处理 Excel 文件。pd.ExcelFile(file_path): 关键步骤。它将 Excel 文件加载为一个 ExcelFile 对象。只有通过这个对象,我们才能访问文件的元数据(如 sheet_names)和内容。xls.sheet_names: 返回当前 ExcelFile 对象中所有工作表的名称列表。条件判断 if target_sheet_names and sheet_name not in target_sheet_names:: 根据 target_sheet_names 列表筛选需要处理的工作表。xls.parse(sheet_name): 从 ExcelFile 对象中解析指定名称的工作表,并将其转换为一个 Pandas DataFrame。数据收集 all_sheet_data_lists[sheet_name].append(df): 将解析出的 DataFrame 添加到 all_sheet_data_lists 字典中对应工作表名称的列表中。pd.concat(df_list, ignore_index=True): 在遍历完所有文件并收集到所有同名工作表的 DataFrame 列表后,使用 pd.concat 将这些 DataFrame 纵向堆叠(即行追加),ignore_index=True 会重置合并后的 DataFrame 的索引。错误处理 try…except: 捕获在加载 Excel 文件或解析工作表时可能发生的错误,提高代码的健壮性。
注意事项
文件路径准确性:请务必将示例代码中的 ‘your/excel/files/path’ 替换为您的 Excel 文件所在的实际路径。路径错误是导致程序无法运行的常见原因。内存消耗:如果您的 Excel 文件数量庞大或单个工作表数据量巨大,pd.concat 操作可能会消耗大量内存。在这种情况下,可以考虑:分批处理文件。在解析时指定 dtype 参数以优化 DataFrame 的数据类型,减少内存占用。如果数据量过大,考虑使用 Dask 等大数据处理库。数据结构一致性:当合并多个 Excel 文件中的同名工作表时,最好确保这些工作表的列结构(列名、列顺序)大致相同。如果列名不一致,pd.concat 默认会保留所有列,并在缺失值处填充 NaN。错误处理与日志记录:示例代码中包含了基本的 try-except 块来处理文件加载和工作表解析错误。在生产环境中,建议加入更详细的日志记录,以便追踪问题。空文件或空工作表:代码会尝试处理所有 Excel 文件。如果存在空文件或空工作表,xls.parse() 可能会返回空的 DataFrame,这在 pd.concat 中通常
以上就是Python Pandas:高效合并多工作簿多工作表 Excel 数据的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1374438.html
微信扫一扫
支付宝扫一扫