python内置方法的汇总整理

Python内置方法是解释器自带、无需导入即可使用的函数,涵盖数据转换、数学运算、可迭代对象处理、对象反射、输入输出及常用工具。例如int()、str()用于类型转换;abs()、max()、sum()处理数值;len()、sorted()、zip()操作可迭代对象;type()、isinstance()、getattr()实现反射;print()、input()控制IO;id()、hash()、ord()提供底层支持。掌握这些方法可提升开发效率,但需注意eval()、exec()等存在安全风险,应谨慎使用。

python内置方法的汇总整理

Python内置方法是指解释器自带、无需导入模块即可直接使用的函数或方法。它们分布在不同类别中,涵盖数据类型操作、逻辑判断、数学运算、对象属性管理等多个方面。以下是常见且重要的Python内置方法的分类整理,帮助你系统掌握其用途和使用场景。

一、数据类型转换相关

用于在不同数据类型之间进行转换,是日常编程中最常用的一类内置方法。

int(x):将x转换为整数类型 float(x):转换为浮点数 str(x):转换为字符串 bool(x):转换为布尔值(空值、0、None等为False) list(iterable):转换为列表 tuple(iterable):转换为元组 set(iterable):转换为集合(去重) dict():创建字典,支持多种初始化方式 complex(real, imag):创建复数 bytes(string, encoding):字符串转字节

二、数值与数学运算

处理数字计算和比较操作,适用于科学计算或逻辑判断。

abs(x):返回x的绝对值 round(x, n):将x四舍五入保留n位小数 pow(x, y):等价于x**y,也可带模参数pow(x, y, z) max(iterable):返回最大值 min(iterable):返回最小值 sum(iterable):对可迭代对象求和 divmod(a, b):返回商和余数的元组 (a // b, a % b)

三、可迭代对象处理

针对列表、元组、字符串等可迭代结构的操作函数。

立即学习“Python免费学习笔记(深入)”;

len(s):返回对象长度或元素个数 range(start, stop, step):生成一个数字序列 enumerate(iterable, start=0):返回带索引的枚举对象 zip(*iterables):将多个可迭代对象打包成元组 reversed(seq):返回反向迭代器 sorted(iterable, key=None, reverse=False):返回排序后的新列表 all(iterable):所有元素为True则返回True any(iterable):任一元素为True则返回True

四、对象属性与反射操作

用于动态查看或修改对象属性,适合高级用法如框架开发。

dir([object]):返回对象的属性列表 type(obj):返回对象的类型 isinstance(obj, class_or_tuple):判断对象是否属于某类 hasattr(obj, name):检查对象是否有指定属性 getattr(obj, name[, default]):获取对象属性值 setattr(obj, name, value):设置对象属性 delattr(obj, name):删除对象属性 vars([obj]):返回对象的__dict__属性,或当前局部变量 callable(obj):判断对象是否可调用

五、输入输出与执行控制

涉及程序交互、代码执行和环境控制。

print(*objects, sep=’ ‘, end=’n’):输出内容到控制台 input(prompt):从标准输入读取一行字符串 exec(code):执行动态Python代码(字符串或AST) eval(expression):求表达式值,不推荐用于不可信输入 help(object):显示对象的帮助信息

六、其他常用内置方法

不属于上述类别但非常实用的功能。

id(obj):返回对象的唯一标识(内存地址) hash(obj):返回对象的哈希值(适用于不可变类型) memoryview(obj):创建内存视图,用于高效处理字节数据 ord(c):返回字符的Unicode码点 chr(i):根据码点返回对应字符 globals():返回全局变量字典 locals():返回当前作用域的局部变量字典

基本上就这些。掌握这些内置方法能显著提升编码效率,减少重复造轮子。建议结合实际场景多加练习,理解每个方法的边界条件和异常处理方式。比如eval和exec虽强大但存在安全风险,生产环境中慎用。其他如map、filter虽不是内置“方法”而是类,但在使用上常被归为内置函数范畴,也值得了解。

以上就是python内置方法的汇总整理的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1374546.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 14:14:56
下一篇 2025年12月14日 14:15:09

相关推荐

  • Python 中实现用户输入不区分大小写的实用指南

    本文详细介绍了在 Python 中处理用户输入时如何实现不区分大小写的功能,尤其是在字典查找场景。通过利用字符串的 casefold() 方法,我们可以有效地标准化字典键和用户输入,从而确保程序能够灵活地响应不同大小写格式的输入,提升用户体验。 核心问题:用户输入的大小写敏感性 在 python 应…

    好文分享 2025年12月14日
    000
  • 优化FastAPI高内存缓存的多进程扩展:事件驱动架构实践

    本文旨在解决FastAPI应用在Gunicorn多进程模式下,因存在巨大内存缓存(如8GB)导致内存消耗剧增,难以有效扩展工作进程的问题。核心策略是采用事件驱动架构,将CPU密集型和数据处理任务从Web服务器卸载到独立的异步处理机制中,从而实现Web服务的高并发响应,同时优化内存资源利用,提升应用整…

    2025年12月14日
    000
  • 在IIS 10上部署FastAPI应用:完整教程

    本教程详细指导如何在Windows Server 2019上的IIS 10环境中部署Python FastAPI应用程序。我们将涵盖从Python和HTTP Platform Handler的安装、FastAPI项目的构建、IIS应用程序池和网站配置、到关键的文件权限设置,确保您的FastAPI应用…

    2025年12月14日
    000
  • 优化FastAPI应用:处理巨型内存缓存与多进程扩展的策略

    当FastAPI应用面临巨大的内存缓存(如8GB)和扩展多进程工作者(如Gunicorn)的需求时,直接在每个工作进程中复制缓存会导致内存资源迅速耗尽。本文将深入探讨为何在Web服务器进程中处理大型数据块是低效的,并提出采用事件驱动架构作为解决方案,通过任务队列(如Celery)、消息中间件(如Ka…

    2025年12月14日
    000
  • Z3求解器在非线性约束优化中的局限性与应用指南

    Z3的Optimizer主要设计用于解决线性SMT公式的优化问题。对于实数或整数上的非线性约束,Optimizer通常不支持,可能导致求解器无响应或不终止。然而,位向量上的非线性约束是支持的,因为它们可以通过位爆炸技术处理。本文将深入探讨Z3在处理非线性约束时的行为、局限性及其适用范围,并提供相应的…

    2025年12月14日
    000
  • Flask中AJAX更新图片不生效问题解析与解决方案:正确返回JSON数据

    本文旨在解决Flask应用中AJAX请求成功但网页图片未更新的问题。核心在于服务器端update_image路由错误地返回了整个HTML模板,而非图片URL的JSON数据。通过将Flask路由修改为使用jsonify返回包含正确静态文件URL的JSON对象,并确保客户端JavaScript正确解析此…

    2025年12月14日
    000
  • 如何高效扩展FastAPI应用处理大内存缓存的策略

    在FastAPI应用中,当面对Gunicorn多进程模式下巨大的内存缓存(如8GB)导致的扩展性瓶颈时,传统的增加工作进程数会迅速耗尽系统内存。本文将探讨一种基于事件驱动架构的解决方案,通过将CPU密集型和内存密集型任务从Web服务器中解耦并异步处理,从而实现应用的高效扩展,避免重复加载大型内存缓存…

    2025年12月14日
    000
  • Python中Gevent的使用

    Gevent通过协程实现高效并发,安装后使用monkey.patch_all()使标准库非阻塞,gevent.spawn()创建协程并发执行任务,结合requests可加速HTTP请求,适用于I/O密集型场景如爬虫、高并发服务器。 Gevent 是一个基于 greenlet 的 Python 并发框…

    2025年12月14日
    000
  • 从频率信息构建音频正弦波信号的两种方法

    本教程探讨了两种从已知频率和录音长度数据生成音频正弦波的方法:直接数学合成和通过逆傅里叶变换从频率频谱重建。我们将详细介绍每种方法的原理、参数设置,并提供Python代码示例,帮助读者理解如何创建单一或复合的音频信号,并讨论在实际应用中的注意事项,如采样率和幅度归一化。 在音频处理中,我们经常需要根…

    2025年12月14日
    000
  • PySpark DataFrame二元特征转换:从长格式到宽格式的实践指南

    本文详细介绍了如何将PySpark DataFrame中的长格式特征数据高效转换为宽格式的二元特征矩阵。通过利用Pandas库的crosstab函数进行特征透视,并结合reindex方法处理缺失的人员编号,确保输出一个结构清晰、包含指定人员的二元编码特征表,是数据预处理和特征工程中的一项重要技巧。 …

    2025年12月14日
    000
  • python循环引用是什么意思?

    Python通过引用计数和垃圾回收器处理循环引用,gc模块可检测并清理不可达对象,del操作后仍存在的相互引用对象会被自动回收,但可能延迟释放且影响析构函数调用。 Python循环引用指的是两个或多个对象相互持有对方的引用,导致它们的引用计数无法降为零,即使这些对象已经不再被程序使用,也无法被垃圾回…

    2025年12月14日
    000
  • 解决ChromaDB hnswlib.Index属性错误的教程

    本教程旨在解决在使用Langchain与ChromaDB集成时遇到的AttributeError: type object ‘hnswlib.Index’ has no attribute ‘file_handle_count’错误。文章将深入剖析该错…

    2025年12月14日
    000
  • 解决Kivy应用Buildozer打包APK时Pyjnius编译失败的错误

    Kivy应用使用Buildozer打包APK时,常见因pyjnius模块编译失败导致导出中断,表现为clang报错,如Py_REFCNT赋值错误或文件缺失。本文将详细解析此类错误,提供从buildozer.spec配置检查到环境清理、版本兼容性调整等一系列专业解决方案,确保Kivy应用顺利打包为An…

    2025年12月14日
    000
  • python创建列表的方法整理

    使用方括号可直接创建列表,如 [1, 2, 3] 或混合类型 [1, ‘hello’, 3.14];2. list() 构造函数能将字符串、元组、range等可迭代对象转为列表;3. 列表推导式支持按规则生成,如 [x2 for x in range(5)];4. 操作符用于…

    2025年12月14日
    000
  • Z3 Optimizer对非线性约束的支持限制与实践解析

    本文深入探讨Z3求解器中Optimizer模块在处理非线性约束时遇到的局限性。重点阐明Z3的Optimizer主要设计用于解决线性优化问题,而非线性实数或整数约束可能导致求解器无响应或无法终止。文章将通过示例代码演示线性与非线性场景下的行为差异,并解析其底层原因,帮助用户理解Z3 Optimizer…

    2025年12月14日
    000
  • 深入探索 AWS Lambda Python 运行时内置模块及其版本

    在AWS Lambda开发中,本地与云端Python运行时环境的模块版本差异常导致意外错误。为了避免不必要的依赖打包并确保代码兼容性,本文提供了一种直接且准确的方法:通过部署一个简单的Lambda函数,利用Python的importlib.metadata模块,实时查询并列出指定Lambda运行时中…

    2025年12月14日
    000
  • 如何在Python类实例上实现默认值返回与属性访问并存

    本文探讨了在Python中,如何设计类使其实例在被直接引用时返回一个特定值,同时仍能通过点运算符访问其内部属性。针对Python对象模型特性,我们介绍并演示了利用__call__魔术方法来实现这一功能,使得用户可以通过调用实例来获取默认值,同时保持对其他属性的便捷访问,从而优化代码结构和用户体验。 …

    2025年12月14日
    000
  • Z3优化器与非线性约束:深入理解其局限性与应用场景

    Z3的优化器在处理线性约束系统时表现出色,能够高效地求解变量的边界。然而,当引入实数或整数上的非线性约束时,如乘法或更复杂的函数,Z3优化器可能会遭遇性能瓶颈甚至无法终止。本文将详细探讨Z3优化器对非线性约束的支持范围,解释其设计原理,并提供实际代码示例,帮助用户理解Z3在不同类型约束下的适用性与局…

    2025年12月14日
    000
  • Pandas DataFrame:基于日期条件高效更新列值教程

    本文详细介绍了如何在Pandas DataFrame中,根据指定日期范围高效地更新或插入特定值到目标列。我们将探讨使用numpy.where结合pandas.Series.between以及布尔索引两种专业方法,确保数据处理的准确性和效率,避免依赖硬编码的行索引。 在数据分析和处理中,我们经常需要根…

    2025年12月14日
    000
  • Z3 Optimizer与非线性约束:原理、局限与实践

    本文深入探讨Z3求解器中Optimizer组件处理非线性约束时的行为与局限。我们发现,尽管Z3能处理部分非线性SMT问题,但其Optimizer主要设计用于线性优化,对实数或整数域上的非线性约束支持有限,可能导致求解器无响应。文章通过示例代码演示了这一现象,并详细解释了Optimizer不支持非线性…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信