使用 Pandas 高效计算历史同期数据及变化率

使用 pandas 高效计算历史同期数据及变化率

本教程详细介绍了如何使用 Python Pandas 库高效地计算数据集中指定历史周期的值,并进一步分析其绝对变化和百分比变化。通过构建灵活的辅助函数,文章展示了如何利用日期偏移和DataFrame自合并的策略,解决在时间序列数据中获取同期对比数据的常见需求,确保数据分析的准确性和可扩展性。

在数据分析中,我们经常需要将当前数据与历史同期数据进行比较,例如与上个月、上季度或去年同期的数据进行对比,以洞察趋势和变化。Pandas 库提供了强大的数据处理能力,但直接获取精确的历史同期值并计算其变化率可能需要一些技巧。本教程将通过一个实际案例,详细讲解如何构建一个灵活且可重用的 Python 函数来解决这一问题。

核心概念:历史同期数据提取

要获取历史同期数据,主要涉及以下几个步骤:

日期偏移: 使用 Pandas 的 DateOffset 功能,根据当前日期计算出目标历史日期的值。例如,要获取一个月前的数据,可以将当前日期减去一个月。DataFrame 自合并 (Self-Merge): 将原始 DataFrame 与其自身进行合并。通过将当前日期的历史偏移值作为合并键,与原始 DataFrame 中的日期列进行匹配,从而将历史数据引入到当前行的上下文中。数据清洗与计算: 合并后,清理冗余列,并根据需要计算当前值与历史值之间的绝对变化和百分比变化。

实现细节:get_last_period_values 函数解析

我们首先定义一个核心辅助函数 get_last_period_values,它负责获取指定历史周期的数据及其变化。

import pandas as pdimport iodef get_last_period_values(df, months_prior, metric_cols, dimension_cols, date_col):    """    获取指定月份前的历史数据,并计算绝对变化和百分比变化。    参数:    df (pd.DataFrame): 输入的DataFrame。    months_prior (int): 要回溯的月份数。    metric_cols (list): 需要计算历史值和变化的指标列名列表。    dimension_cols (list): 维度列名列表,这些列会随历史数据一起被带入,但通常不用于合并键。    date_col (str): 日期列的名称。    返回:    pd.DataFrame: 包含历史数据、绝对变化和百分比变化的DataFrame。    """    df_copy = df.copy() # 创建DataFrame副本,避免修改原始数据    # 1. 计算历史日期    # 为每行计算其对应的历史日期    df_copy[f'{date_col}_Prior'] = df_copy[date_col] - pd.DateOffset(months=months_prior)    # 2. DataFrame 自合并    # 将DataFrame与自身合并,以获取历史数据。    # left_on: 当前DataFrame的计算出的历史日期。    # right_on: 原始DataFrame的日期列。    # how='left': 确保保留所有当前数据,如果找不到对应的历史数据,则填充NaN。    # suffixes: 用于区分合并后同名列(如Organic Keywords)的当前值和历史值。    df_copy = df_copy.merge(        df_copy[[date_col] + dimension_cols + metric_cols],         left_on=f'{date_col}_Prior',         right_on=date_col,         how='left',        suffixes=('', f'_{months_prior}mo_Prior') # 为历史数据列添加后缀    )    # 3. 数据清洗    # 删除辅助的_Prior日期列和合并过程中可能产生的冗余维度列    df_copy = df_copy.drop(columns=[f'{date_col}_Prior'] + [col + f'_{months_prior}mo_Prior' for col in dimension_cols])    # 4. 计算绝对变化    # 遍历每个指标列,计算当前值与历史值之间的差值    for metric in metric_cols:        df_copy[f'{metric}_{months_prior}mo_Abs_Change'] = df_copy[metric] - df_copy[f'{metric}_{months_prior}mo_Prior']    # 5. 计算百分比变化    # 遍历每个指标列,计算百分比变化并四舍五入到两位小数    for metric in metric_cols:        # 避免除以零错误,这里直接使用公式,NaN值会在计算中自然产生        df_copy[f'{metric}_{months_prior}mo_Pct_Change'] = df_copy[metric] / df_copy[f'{metric}_{months_prior}mo_Prior'] - 1        df_copy[f'{metric}_{months_prior}mo_Pct_Change'] = df_copy[f'{metric}_{months_prior}mo_Pct_Change'].round(2)    return df_copy

函数关键点说明:

pd.DateOffset(months=months_prior): 这是 Pandas 中处理日期偏移的核心工具。它允许我们以月、日、年等单位精确地加减日期。df_copy.merge(…): 自合并是实现历史数据匹配的关键。left_on=f'{date_col}_Prior’ 和 right_on=date_col 定义了合并的键。当前 DataFrame 的计算出的历史日期 (Date_Prior) 将与原始 DataFrame 的实际日期 (Date) 进行匹配。how=’left’ 确保了所有当前日期的数据都被保留。如果某个当前日期没有对应的历史数据(例如,数据集中最早的几个月),则历史数据列将填充 NaN。suffixes=(”, f’_{months_prior}mo_Prior’) 非常重要。它为合并后来自右侧 DataFrame 的同名列(如 Organic Keywords)添加后缀,以便我们可以区分当前值和历史值。计算变化: 函数不仅获取历史值,还进一步计算了绝对变化(Abs_Change)和百分比变化(Pct_Change),这在实际分析中非常有用。百分比变化计算时,通过 round(2) 进行了格式化。

处理多周期分析:get_period_values 函数

为了方便地对多个历史周期进行分析(例如,同时获取 1 个月前和 12 个月前的数据),我们可以再封装一个函数 get_period_values。

def get_period_values(df, periods, metric_cols, dimension_cols, date_col):    """    对多个指定周期执行历史数据提取和变化计算。    参数:    df (pd.DataFrame): 输入的DataFrame。    periods (list): 包含要分析的月份数的列表 (e.g., [1, 3, 12])。    metric_cols (list): 需要计算历史值和变化的指标列名列表。    dimension_cols (list): 维度列名列表。    date_col (str): 日期列的名称。    返回:    pd.DataFrame: 包含所有指定周期历史数据和变化的DataFrame。    """    df_copy = df.copy()    for period in periods:        df_copy = get_last_period_values(df_copy, period, metric_cols, dimension_cols, date_col)    return df_copy

这个函数简单地遍历 periods 列表,对每个周期调用 get_last_period_values 函数,并将结果逐步合并到 df_copy 中。

完整示例代码

下面是结合上述函数的完整脚本,它读取一个 CSV 格式的字符串数据,并计算 1 个月和 12 个月前的历史数据及其变化。

import pandas as pdimport io## 常量定义,提高代码可读性和可维护性INITIAL_COL_REORDER = ['URL', 'Date', 'Organic Keywords', 'Organic Traffic']METRIC_COLS = ['Organic Keywords', 'Organic Traffic'] # 需要分析的指标列DIMENSION_COLS = ['URL'] # 维度列,此处只有一个URL,但设计上可扩展DATE_COL = 'Date' # 日期列名PERIODS = [1, 12] # 需要计算的周期 (1个月前, 12个月前)# 示例输入数据 (CSV格式字符串)INPUT_CSV = """URL,Organic Keywords,Organic Traffic,Datehttps://www.example-url.com/,1315,11345,20231115https://www.example-url.com/,1183,5646,20231015https://www.example-url.com/,869,5095,20230915https://www.example-url.com/,925,4574,20230815https://www.example-url.com/,899,4580,20230715https://www.example-url.com/,1382,5720,20230615https://www.example-url/,1171,5544,20230515https://www.example-url/,1079,5041,20230415https://www.example-url/,734,3855,20230315https://www.example-url/,853,3455,20230215https://www.example-url/,840,2343,20230115https://www.example-url/,325,2318,20221215https://www.example-url/,156,1981,20221115https://www.example-url/,166,2059,20221015https://www.example-url/,124,1977,20220915https://www.example-url/,98,1919,20220815https://www.example-url/,167,1796,20220715https://www.example-url/,140,1596,20220615https://www.example-url/,168,1493,20220515https://www.example-url/,171,1058,20220415https://www.example-url/,141,1735,20220315https://www.example-url/,129,1836,20220215https://www.example-url/,141,746,20220115https://www.example-url/,129,1076,20211215"""## HELPER FUNCTION ### (此处省略get_last_period_values和get_period_values函数定义,因为前面已给出)# 请确保将上述两个函数定义粘贴到此处,以便脚本完整运行。## MAIN SCRIPT ##if __name__ == '__main__':    # 1. 读取CSV数据    df = pd.read_csv(io.StringIO(INPUT_CSV))    # 2. 初始列重排 (可选,根据需要调整)    df = df[INITIAL_COL_REORDER]    # 3. 将日期列转换为datetime对象    df[DATE_COL] = pd.to_datetime(df[DATE_COL], format='%Y%m%d')    # 4. 按日期降序排序 (重要,确保数据处理的逻辑一致性)    df = df.sort_values(by=DATE_COL, ascending=False)    # 5. 调用主函数计算所有周期的历史数据和变化    df_final = get_period_values(df, PERIODS, METRIC_COLS, DIMENSION_COLS, DATE_COL)    # 6. 显示最终结果    print(df_final.to_string()) # 使用to_string()防止输出被截断

注意事项与最佳实践

数据预处理:日期格式: 确保日期列被正确转换为 Pandas 的 datetime 类型。本例中使用 pd.to_datetime(df[DATE_COL], format=’%Y%m%d’) 进行转换。数据排序: 在进行时间序列分析时,通常建议将 DataFrame 按日期列进行排序,尽管 merge 操作本身不依赖排序,但良好的数据习惯有助于理解和调试。本例中采用降序排序。处理缺失值 (NaN):由于 how=’left’ 合并策略,如果当前日期没有对应的历史日期数据(例如,数据集最早的几个月份),那么历史数据列将填充 NaN。在进行后续分析或可视化时,需要考虑如何处理

以上就是使用 Pandas 高效计算历史同期数据及变化率的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1377355.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 17:42:33
下一篇 2025年12月14日 17:42:38

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信