使用 Transformers 解决 BERT 词嵌入中的内存溢出问题

使用 transformers 解决 bert 词嵌入中的内存溢出问题

本文旨在提供一种解决在使用 BERT 等 Transformers 模型进行词嵌入时遇到的内存溢出问题的有效方法。通过直接使用 tokenizer 处理文本输入,并适当调整 batch size,可以避免 `batch_encode_plus` 可能带来的内存压力,从而顺利生成词嵌入。

在使用 BERT 或其他 Transformers 模型生成文本数据集的词嵌入时,经常会遇到 OutOfMemoryError 错误,尤其是在处理长文本序列时。这主要是因为模型需要加载大量数据到 GPU 内存中进行计算。本文将介绍一种更高效的方法,通过优化文本处理流程和调整 batch size 来解决这个问题。

解决方案:优化文本处理和 Batch Size

传统的 batch_encode_plus 方法可能会导致内存占用过高。一种更有效的方法是直接使用 tokenizer 处理文本输入,并结合适当的 batch size。

1. 直接使用 Tokenizer 处理文本

不再使用 batch_encode_plus,而是直接使用 tokenizer 对象处理文本列表。这允许 tokenizer 内部更有效地管理内存。

import torchfrom transformers import AutoModel, AutoTokenizer# 输入文本列表 (可以是长句子)texts = ['test1', 'test2']# 加载预训练模型和 tokenizermodel_name = "indolem/indobert-base-uncased" # 这里替换为你想要使用的模型model = AutoModel.from_pretrained(model_name)tokenizer = AutoTokenizer.from_pretrained(model_name)# 对文本进行分词、截断和填充tokenized_texts = tokenizer(texts,                            max_length=512,                            truncation=True,                            padding=True,                            return_tensors='pt')

代码解释:

AutoModel.from_pretrained(model_name): 加载指定名称的预训练模型。AutoTokenizer.from_pretrained(model_name): 加载与模型对应的 tokenizer。tokenizer(…): 使用 tokenizer 直接处理文本列表,设置最大长度、截断和填充策略,并返回 PyTorch 张量。

2. 前向传播

将 tokenizer 处理后的文本批次传递给模型进行前向传播。

# 前向传播with torch.no_grad():    input_ids, attention_mask = tokenized_texts['input_ids'], tokenized_texts['attention_mask']    outputs = model(input_ids=input_ids,                    attention_mask=attention_mask)    word_embeddings = outputs.last_hidden_state

代码解释:

with torch.no_grad():: 禁用梯度计算,减少内存占用。outputs = model(…): 将输入 ID 和 attention mask 传递给模型进行前向传播。word_embeddings = outputs.last_hidden_state: 获取最后一层的隐藏状态,即词嵌入。

3. 检查输出形状

验证词嵌入的形状是否符合预期。

print(word_embeddings.shape)# 输出: torch.Size([batch_size, num_seq_tokens, embed_size])# 例如: torch.Size([2, 4, 768])

代码解释:

word_embeddings.shape: 打印词嵌入的形状,通常为 [batch_size, num_seq_tokens, embed_size],其中 batch_size 是批次大小,num_seq_tokens 是序列中的 token 数量,embed_size 是嵌入维度。

4. 调整 Batch Size (如果仍然出现 OOM)

如果即使使用上述方法仍然出现 OutOfMemoryError,则需要减小 batch size。可以循环处理数据,每次处理较小的批次。

import torchfrom transformers import AutoModel, AutoTokenizer# 输入文本列表texts = ['test1', 'test2', 'test3', 'test4', 'test5']# 加载预训练模型和 tokenizermodel_name = "indolem/indobert-base-uncased" # 这里替换为你想要使用的模型model = AutoModel.from_pretrained(model_name)tokenizer = AutoTokenizer.from_pretrained(model_name)batch_size = 2  # 设置较小的 batch sizefor i in range(0, len(texts), batch_size):    batch_texts = texts[i:i + batch_size]    # 对文本进行分词、截断和填充    tokenized_texts = tokenizer(batch_texts,                                max_length=512,                                truncation=True,                                padding=True,                                return_tensors='pt')    # 前向传播    with torch.no_grad():        input_ids, attention_mask = tokenized_texts['input_ids'], tokenized_texts['attention_mask']        outputs = model(input_ids=input_ids,                        attention_mask=attention_mask)        word_embeddings = outputs.last_hidden_state    print(f"Batch {i//batch_size + 1} embeddings shape: {word_embeddings.shape}")    # 在这里处理词嵌入,例如存储或进一步分析

代码解释:

batch_size = 2: 设置较小的 batch size,例如 2。for i in range(0, len(texts), batch_size):: 循环处理数据,每次处理一个批次。batch_texts = texts[i:i + batch_size]: 提取当前批次的文本。循环内部的代码与之前的示例相同,但现在每次处理的文本量较小,从而降低了内存占用。

注意事项

选择合适的 Batch Size: Batch size 的选择取决于 GPU 的内存大小和模型的复杂度。可以尝试不同的 batch size,找到一个既能充分利用 GPU 资源又能避免内存溢出的值。使用 GPU: 确保代码在 GPU 上运行,这可以显著提高计算速度。优化模型: 如果可能,可以尝试使用更小的模型或对模型进行量化,以减少内存占用。梯度累积: 在某些情况下,可以使用梯度累积来模拟更大的 batch size,而无需增加内存占用。

总结

通过直接使用 tokenizer 处理文本输入并适当调整 batch size,可以有效地解决在使用 Transformers 模型进行词嵌入时遇到的内存溢出问题。这种方法简单易行,并且适用于各种 Transformers 模型。在实际应用中,可以根据具体情况调整 batch size 和其他参数,以达到最佳性能。

以上就是使用 Transformers 解决 BERT 词嵌入中的内存溢出问题的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1377467.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 17:48:16
下一篇 2025年12月14日 17:48:27

相关推荐

  • BERT词嵌入长文本处理与内存优化实践

    本文详细介绍了在使用bert模型生成词嵌入时,如何高效处理长文本并解决内存溢出(oom)问题。教程涵盖了使用hugging face `transformers`库的推荐实践,包括分词器的正确配置、模型前向传播的步骤,并提供了当内存不足时,通过调整批处理大小进行优化的策略,确保在大规模文本数据集上稳…

    好文分享 2025年12月14日
    000
  • 解决 Visual Studio 2022 中 Python 环境损坏的问题

    本文旨在帮助开发者解决 Visual Studio 2022 中由于错误配置导致的 Python 环境损坏问题。我们将探讨如何排查并修复全局 `PYTHONHOME` 环境变量被错误设置的情况,即使在系统环境变量、注册表和 Visual Studio 设置重置后问题仍然存在。通过详细的步骤和潜在的解…

    2025年12月14日
    000
  • Flask应用中异步执行GPU密集型任务的策略

    本文旨在指导如何在Flask应用中有效地将耗时的GPU密集型任务转移到后台执行,确保Web服务器的响应性和客户端的非阻塞体验。我们将探讨`concurrent.futures`模块与Flask开发服务器的结合使用,以及生产环境下WSGI服务器的配置,并提供替代的服务器架构方案,以实现任务的异步处理和…

    2025年12月14日
    000
  • Python多CSV文件数据处理与Matplotlib可视化教程

    本教程旨在解决python处理多个csv文件时常见的语法错误、文件路径管理问题以及matplotlib绘图的实践技巧。我们将重点讲解如何正确导入、处理指定目录下的所有csv文件,并利用matplotlib为每个文件生成独立的彩色图表,同时提供代码优化建议和注意事项,确保流程的健壮性和可读性。 在数据…

    2025年12月14日
    000
  • SharePoint程序化访问:解决AADSTS65001错误与证书认证实践

    本文旨在解决在使用`office365-rest-python-client`库程序化访问sharepoint online时,即使已授予api权限并进行管理员同意,仍可能遇到的`aadsts65001 delegationdoesnotexist`认证错误。核心解决方案是放弃客户端密钥(clien…

    2025年12月14日
    000
  • 从Plotly图表获取HTML字符串:to_html()方法详解

    本文旨在解决plotly用户在尝试获取图表html字符串时遇到的常见困惑。我们将明确指出`plotly.io.write_html()`方法用于文件写入,而真正用于返回html字符串的是`plotly.io.to_html()`。同时,文章还将深入探讨`to_html()`方法的关键参数,特别是如何…

    2025年12月14日
    000
  • 从Pandas DataFrame创建嵌套字典的实用指南

    本文详细介绍了如何将pandas dataframe中的扁平化数据转换为多层嵌套字典结构。通过利用`pandas.dataframe.pivot`方法,您可以高效地将表格数据重塑为以指定列作为外层和内层键,以另一列作为值的字典。教程将涵盖具体实现步骤、示例代码,并提供关键注意事项,帮助您在数据处理中…

    2025年12月14日
    000
  • 解决CustomTkinter跨模块图片显示错误及最佳实践

    本文旨在解决在customtkinter应用中,从独立模块加载并显示包含图片的控件时遇到的`_tkinter.tclerror: image “pyimagex” doesn’t exist`错误。我们将深入探讨导致此问题的根源,包括python的垃圾回收机制、t…

    2025年12月14日
    000
  • 使用Pandas计算历史同期值及变化率的通用方法

    本文详细阐述了如何利用pandas库高效地计算dataframe中指定指标的历史同期值,并进一步分析其绝对变化量和百分比变化率。通过构建可复用的函数,我们能够灵活地获取任意前n个月的数据,并将其与当前数据进行合并,为时间序列分析提供强大的数据支持。 引言 在数据分析领域,特别是对时间序列数据进行分析…

    2025年12月14日
    000
  • Python函数中如何返回字典键名而非值

    本文旨在解决Python函数中常见的误区:当需要根据字典值进行判断并返回其对应键名时,误将字典值作为参数传入,导致`AttributeError`。我们将详细阐述问题根源,并提供一种推荐的解决方案,即在函数调用时传入字典的键名而非值,从而在函数内部通过键名访问字典并实现正确逻辑。 在Python编程…

    2025年12月14日
    000
  • 解决arm64架构下SpaCy日语模型(ja_core_news_sm)安装问题

    本文旨在解决在arm64架构(如M1/M2 Mac)的Docker容器中,安装SpaCy日语模型`ja_core_news_sm`时遇到的`sudachipy`编译错误。该错误通常由于缺少Rust编译器引起。本文将提供详细的安装步骤,包括安装Rust编译器、更新pip和`sudachipy`,以及安…

    2025年12月14日
    000
  • KeyBERT安装指南:解决Rust/Cargo依赖引发的安装错误

    本教程旨在解决使用`pip install keybert`时常见的安装失败问题,特别是当出现rust/cargo未安装的错误提示时。我们将详细介绍如何正确安装rust及其包管理器cargo,这是keybert及其某些底层组件编译所必需的。通过遵循本指南,用户将能够顺利完成keybert的安装,并开…

    2025年12月14日
    000
  • 在 Python 中无需等待即可启动或恢复异步方法/协程

    本文旨在解决在 python 中启动异步协程时遇到的困惑,并提供一种在不阻塞主线程的情况下,类似 javascript 的方式立即执行异步任务的方案。文章深入探讨了 `asyncio` 库的特性,并结合 `run_coroutine_threadsafe` 方法展示了如何在独立的事件循环中运行协程,…

    2025年12月14日
    000
  • Python函数参数传递:从值到键的转换策略

    本文旨在解决python函数中一个常见的参数传递误区:当函数需要引用字典的键(如资源名称)时,却错误地接收了键对应的数值,导致尝试对非字典类型使用`.key()`方法而引发`attributeerror`。教程将通过重构函数参数,演示如何直接传递键名,从而在函数内部通过键访问字典值,并确保在输出中正…

    2025年12月14日
    000
  • 在Python中以类似JavaScript的方式启动异步协程

    本文旨在解决python异步编程中协程启动方式与javascript等语言的差异。通过asyncio.run_coroutine_threadsafe方法,我们可以在独立的事件循环中运行协程,并提供了一个attempt函数来检测协程的完成状态,从而实现更灵活的异步任务管理,避免阻塞主线程。 在Pyt…

    2025年12月14日
    000
  • 获取Python顶层代码对象的技巧与实践

    本文深入探讨了在python中获取模块顶层代码对象的方法。由于顶层代码的执行机制与函数不同,其代码对象不直接暴露。我们将介绍如何利用`inspect`模块遍历调用栈,定位到顶层帧,进而提取其对应的代码对象,并分析其`co_consts`等属性,为理解python运行时机制提供实用工具。 在Pytho…

    2025年12月14日
    000
  • Quart框架中SQLite连接的线程安全关闭机制

    本文探讨了在quart框架中使用`teardown_appcontext`关闭sqlite数据库连接时遇到的线程错误,即`sqlite3.programmingerror: sqlite objects created in a thread can only be used in that sam…

    2025年12月14日
    000
  • 使用Pandas计算DataFrame中历史同期值的专业教程

    本教程详细介绍了如何利用pandas库高效地计算dataframe中指定历史周期的数值,并进一步计算绝对变化量和百分比变化量。通过结合`pd.dateoffset`进行日期偏移和`merge`操作,我们能够精确地获取任意月份前的同期数据,从而克服`pct_change()`等方法的局限性,实现灵活且…

    2025年12月14日
    000
  • 解决Windows 11上TensorFlow GPU兼容性问题的终极指南

    本文旨在解决windows 11环境下tensorflow gpu无法识别的问题。核心在于tensorflow 2.11及更高版本已停止原生windows gpu支持。解决方案是降级tensorflow至2.10版本,并搭配cuda 11.2和cudnn 8.1。文章将提供详细的安装步骤、验证方法及…

    2025年12月14日
    000
  • 使用 Pandas 高效计算历史同期数据及变化率

    本教程详细介绍了如何使用 Python Pandas 库高效地计算数据集中指定历史周期的值,并进一步分析其绝对变化和百分比变化。通过构建灵活的辅助函数,文章展示了如何利用日期偏移和DataFrame自合并的策略,解决在时间序列数据中获取同期对比数据的常见需求,确保数据分析的准确性和可扩展性。 在数据…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信