在Python中以类似JavaScript的方式启动和控制异步协程

 在Python中以类似JavaScript的方式启动和控制异步协程

本文旨在解决python异步编程中协程启动和控制的问题,特别是如何实现类似javascript中`async`函数的行为,即立即执行直到遇到第一个`await`。文章将探讨使用`asyncio.run_coroutine_threadsafe`在独立线程中运行协程的方法,并提供示例代码,帮助读者理解如何在python中更灵活地管理异步任务的执行流程。

Python的`asyncio`库提供了一种编写并发代码的方式,但其协程的启动机制与JavaScript等语言有所不同。在Python中,简单地调用一个协程并不会立即执行它,而是需要使用`await`关键字或者`asyncio.gather`等方法来启动。这可能会导致一些困惑,尤其是在需要尽快启动多个协程并稍后等待它们完成的情况下。本文将探讨一种使用`asyncio.run_coroutine_threadsafe`的方法,在独立线程中运行协程,以实现更精细的控制。### 使用 `asyncio.run_coroutine_threadsafe“asyncio.run_coroutine_threadsafe`函数允许你在一个已存在的事件循环中安全地运行一个协程,即使这个事件循环运行在另一个线程中。这为我们提供了一种在后台启动协程,并在主线程中进行非阻塞操作的方法。以下是一个示例,展示了如何使用`asyncio.run_coroutine_threadsafe`:“`pythonimport asyncioimport timefrom threading import Threadglobal_loop = Nonedef thread_for_event_loop(): global global_loop global_loop = asyncio.new_event_loop() asyncio.set_event_loop(global_loop) global_loop.run_forever()t = Thread(target=thread_for_event_loop)t.daemon = Truet.start()time.sleep(1) # wait for thread to startold_print = printprint = lambda *_: old_print(round(time.perf_counter(), 1), *_)def attempt(future): # doesn’t actually do anything, only prints if task is done print(future.done())async def work(): print(“SETUP”) await asyncio.sleep(2) print(“MIDDLE”) await asyncio.sleep(2) print(“END”) return “Result”async def main(): print(“START”, int(time.perf_counter())) task = asyncio.run_coroutine_threadsafe(work(), global_loop) attempt(task) attempt(task) print(“before first sleep”) time.sleep(3) print(“after first sleep”) attempt(task) attempt(task) print(“before second sleep”) time.sleep(3) # Block CPU to wait for second sleeping to finish print(“after second sleep”) attempt(task) attempt(task) print(await asyncio.wrap_future(task))asyncio.run(main())

在这个例子中:

我们创建了一个新的线程,并在其中运行一个独立的事件循环。asyncio.run_coroutine_threadsafe(work(), global_loop) 将 work() 协程提交到这个独立的事件循环中运行。attempt(task) 函数只是简单地检查任务是否完成并打印结果。主线程可以继续执行其他操作,而 work() 协程在后台运行。asyncio.wrap_future(task) 用于等待任务完成并获取结果。

输出结果:

1.1 START 11.1 False1.1 False1.1 before first sleep1.1 SETUP3.1 MIDDLE4.1 after first sleep4.1 False4.1 False4.1 before second sleep5.1 END7.1 after second sleep7.1 True7.1 True7.1 Result

注意事项

线程安全: 使用 asyncio.run_coroutine_threadsafe 时,需要确保你的协程是线程安全的。避免在协程中直接修改共享状态,或者使用适当的锁机制来保护共享资源。错误处理: 如果协程在后台线程中引发异常,你需要适当地处理这些异常。asyncio.wrap_future(task) 会将异常传播到主线程,你可以使用 try…except 块来捕获和处理这些异常。资源管理: 确保在不再需要时关闭事件循环和线程,以避免资源泄漏。

总结

asyncio.run_coroutine_threadsafe 提供了一种在Python中以类似JavaScript的方式启动和控制异步协程的方法。通过在独立的线程中运行协程,你可以更灵活地管理异步任务的执行流程,并在主线程中执行非阻塞操作。然而,需要注意线程安全、错误处理和资源管理等问题。这种方法在需要精细控制异步任务启动和执行时非常有用。


以上就是在Python中以类似JavaScript的方式启动和控制异步协程的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1377479.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 17:48:49
下一篇 2025年12月14日 17:48:55

相关推荐

  • 高效生成BERT词嵌入:解决内存溢出挑战

    本文探讨了在使用bert模型生成词嵌入时常见的内存溢出问题,尤其是在处理长文本或大规模数据集时。我们将介绍如何利用hugging face transformers库进行高效的文本分词和模型前向传播,并强调通过批处理策略进一步优化内存使用,从而稳定地获取高质量的词嵌入。 在使用BERT等大型预训练模…

    好文分享 2025年12月14日
    000
  • Matplotlib轴刻度高级定制:将绝对数据坐标映射为相对标签

    本教程详细介绍了如何在matplotlib中实现高级轴刻度定制,即使数据点是基于绝对物理坐标绘制的,也能使用更具业务意义的相对标识(如网格编号)来标记轴。通过`set_xticks`、`set_yticks`及其对应的`set_xticklabels`和`set_yticklabels`函数,用户可…

    2025年12月14日
    000
  • 在Flask应用中高效处理GPU密集型后台任务

    本文旨在解决Python Flask服务器在处理GPU密集型任务时出现的阻塞问题。通过深入分析服务器请求处理机制与任务并发执行器的协同工作,文章提供了多种解决方案,包括启用Flask开发服务器的多线程模式、合理使用`ProcessPoolExecutor`或`ThreadPoolExecutor`进…

    2025年12月14日
    000
  • BERT模型长文本词向量生成与内存优化实践

    在使用bert等大型预训练模型生成长文本词向量时,常遇到内存溢出(oom)问题,尤其是在处理大量数据或长序列时。本文提供一套基于hugging face `transformers`库的标准解决方案,通过合理利用`autotokenizer`和`automodel`进行高效分词与模型推理,并重点介绍…

    2025年12月14日
    000
  • BERT词嵌入长文本处理与内存优化实践

    本文详细介绍了在使用bert模型生成词嵌入时,如何高效处理长文本并解决内存溢出(oom)问题。教程涵盖了使用hugging face `transformers`库的推荐实践,包括分词器的正确配置、模型前向传播的步骤,并提供了当内存不足时,通过调整批处理大小进行优化的策略,确保在大规模文本数据集上稳…

    2025年12月14日
    000
  • 使用 Transformers 解决 BERT 词嵌入中的内存溢出问题

    本文旨在提供一种解决在使用 BERT 等 Transformers 模型进行词嵌入时遇到的内存溢出问题的有效方法。通过直接使用 tokenizer 处理文本输入,并适当调整 batch size,可以避免 `batch_encode_plus` 可能带来的内存压力,从而顺利生成词嵌入。 在使用 BE…

    2025年12月14日
    000
  • 解决 Visual Studio 2022 中 Python 环境损坏的问题

    本文旨在帮助开发者解决 Visual Studio 2022 中由于错误配置导致的 Python 环境损坏问题。我们将探讨如何排查并修复全局 `PYTHONHOME` 环境变量被错误设置的情况,即使在系统环境变量、注册表和 Visual Studio 设置重置后问题仍然存在。通过详细的步骤和潜在的解…

    2025年12月14日
    000
  • 修复 Visual Studio 2022 中损坏的 Python 环境

    本文档旨在帮助开发者解决 Visual Studio 2022 中 Python 环境因错误配置而损坏的问题。我们将深入探讨导致此问题的常见原因,并提供一系列逐步的解决方案,包括检查系统环境变量、注册表设置、以及 Visual Studio 配置文件等,最终帮助您恢复正常的 Python 开发环境。…

    2025年12月14日
    000
  • python中如何遍历目录树

    最常用方法是os.walk()和pathlib。os.walk()递归遍历目录,返回(路径,子目录,文件)三元组;pathlib的rglob()更简洁,适合现代Python项目。 在Python中遍历目录树,最常用的方法是使用 os.walk()。它能递归地遍历指定目录下的所有子目录和文件,返回一个…

    2025年12月14日
    000
  • python怎么调用c函数

    Python调用C函数主要通过ctypes、cffi或C扩展模块实现。最常用的是ctypes,作为内置库无需额外依赖,适合初学者和大多数场景。首先将C代码编译为共享库(如Linux下生成.so,Windows下生成.dll),然后在Python中使用ctypes加载该库并声明函数原型,最后直接调用函…

    2025年12月14日
    000
  • Flask应用中异步执行GPU密集型任务的策略

    本文旨在指导如何在Flask应用中有效地将耗时的GPU密集型任务转移到后台执行,确保Web服务器的响应性和客户端的非阻塞体验。我们将探讨`concurrent.futures`模块与Flask开发服务器的结合使用,以及生产环境下WSGI服务器的配置,并提供替代的服务器架构方案,以实现任务的异步处理和…

    2025年12月14日
    000
  • Python多CSV文件数据处理与Matplotlib可视化教程

    本教程旨在解决python处理多个csv文件时常见的语法错误、文件路径管理问题以及matplotlib绘图的实践技巧。我们将重点讲解如何正确导入、处理指定目录下的所有csv文件,并利用matplotlib为每个文件生成独立的彩色图表,同时提供代码优化建议和注意事项,确保流程的健壮性和可读性。 在数据…

    2025年12月14日
    000
  • 解决KeyBERT安装中的Rust/Cargo依赖问题

    本文旨在解决keybert库在python环境中安装时遇到的常见rust/cargo编译依赖问题。当尝试通过pip安装keybert时,如果系统缺少rust编译器和cargo包管理器,会导致安装失败。本教程将详细指导用户如何安装rust工具链,从而成功安装并使用keybert。 理解KeyBERT的…

    2025年12月14日
    000
  • SharePoint程序化访问:解决AADSTS65001错误与证书认证实践

    本文旨在解决在使用`office365-rest-python-client`库程序化访问sharepoint online时,即使已授予api权限并进行管理员同意,仍可能遇到的`aadsts65001 delegationdoesnotexist`认证错误。核心解决方案是放弃客户端密钥(clien…

    2025年12月14日
    000
  • Plotly图表生成HTML字符串的正确方法与优化实践

    本文旨在纠正plotly图表导出html字符串的常见误区,明确指出应使用`fig.to_html()`而非`fig.write_html()`来获取html字符串。同时,文章将深入探讨如何通过配置`include_plotlyjs`参数来显著优化生成html字符串的大小,这对于将plotly图表集成…

    2025年12月14日
    000
  • Python数据清洗:利用正则表达式精准移除特定分隔符行

    本文介绍如何在python中利用正则表达式,精准识别并移除文本数据中仅由连字符和空格组成的分隔符行,同时保留数据中包含连字符的有效内容。通过`re.fullmatch()`函数,我们能够确保只有完全符合特定模式的行才会被清除,有效解决了传统字符串替换方法误删数据的问题,提升了数据预处理的准确性。 引…

    2025年12月14日
    000
  • Matplotlib轴标签定制:在绝对坐标系中显示相对刻度

    本教程详细阐述了如何在matplotlib图表中,使用绝对物理坐标绘制数据点的同时,为轴刻度生成并应用基于相对逻辑位置的自定义标签。通过利用`set_xticks()`、`set_yticks()`、`set_xticklabels()`和`set_yticklabels()`函数,开发者可以实现将…

    2025年12月14日
    000
  • 从Plotly图表获取HTML字符串:to_html()方法详解

    本文旨在解决plotly用户在尝试获取图表html字符串时遇到的常见困惑。我们将明确指出`plotly.io.write_html()`方法用于文件写入,而真正用于返回html字符串的是`plotly.io.to_html()`。同时,文章还将深入探讨`to_html()`方法的关键参数,特别是如何…

    2025年12月14日
    000
  • 从Pandas DataFrame创建嵌套字典的实用指南

    本文详细介绍了如何将pandas dataframe中的扁平化数据转换为多层嵌套字典结构。通过利用`pandas.dataframe.pivot`方法,您可以高效地将表格数据重塑为以指定列作为外层和内层键,以另一列作为值的字典。教程将涵盖具体实现步骤、示例代码,并提供关键注意事项,帮助您在数据处理中…

    2025年12月14日
    000
  • 解决CustomTkinter跨模块图片显示错误及最佳实践

    本文旨在解决在customtkinter应用中,从独立模块加载并显示包含图片的控件时遇到的`_tkinter.tclerror: image “pyimagex” doesn’t exist`错误。我们将深入探讨导致此问题的根源,包括python的垃圾回收机制、t…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信