
本教程详细阐述如何在langserve中构建支持动态输入的rag(检索增强生成)应用。文章通过langchain的runnable接口,展示如何将用户查询和目标语言作为动态参数传递给检索器和llm提示模板,从而实现灵活、可配置的交互式ai服务。内容涵盖链式组件的构建、langserve路由配置及示例代码,帮助开发者轻松部署动态rag解决方案。
在构建基于Langchain的RAG(Retrieval Augmented Generation)应用时,一个常见的需求是能够动态地接收用户输入,例如查询问题和目标语言,而不是将它们硬编码在代码中。当使用Langserve部署这些应用时,实现动态输入是提升应用灵活性和用户体验的关键。本教程将指导您如何通过Langchain的Runnable接口,构建一个能够接受动态输入的Langserve RAG应用。
理解Langserve与动态输入
Langserve允许您将Langchain的Runnable对象作为API端点暴露。当一个Runnable被添加到Langserve应用中时,Langserve会自动解析其输入签名,并在Playground界面中生成相应的输入字段。要实现动态输入,核心在于构建一个Langchain链,使其能够从初始输入中提取所需的参数,并将其传递给链中的各个组件(如检索器、提示模板)。
构建动态RAG链的核心组件
为了实现动态RAG,我们需要将检索、文档格式化、提示构建和LLM调用等步骤串联起来,并确保每个步骤都能正确接收其所需的动态输入。
检索器(Retriever): 检索器需要一个查询字符串作为输入。在动态链中,这个查询字符串将来自用户的初始输入。文档格式化(Document Formatter): 检索器返回的是文档对象列表,通常需要将其格式化为单一字符串以便填充到提示模板中。提示模板(Prompt Template): 提示模板需要上下文信息(格式化的文档)和用户问题,以及目标语言。语言模型(LLM): LLM接收填充好的提示,并生成最终答案。
我们将使用RunnablePassthrough和RunnableLambda来编排这些组件。
逐步构建动态RAG链
首先,确保您已经安装了必要的库:
pip install langchain langchain-openai langserve uvicorn faiss-cpu
接下来,我们将定义一个完整的Langchain RAG链。
from langchain_core.runnables import RunnablePassthrough, RunnableLambdafrom langchain_core.promnpts import ChatPromptTemplatefrom langchain_core.output_parsers import StrOutputParserfrom langchain_community.llms import OpenAI # 示例LLMfrom langchain_community.embeddings import OpenAIEmbeddings # 示例嵌入模型from langchain_community.vectorstores import FAISS # 示例向量存储from langchain_core.documents import Documentimport os# 确保设置了OpenAI API Key# os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"# 1. 初始化一个示例检索器# 在实际应用中,这里会加载您的文档并构建一个向量存储# 为了演示,我们创建一个简单的FAISS向量存储和检索器documents = [ Document(page_content="财务账户通常包含资产、负债、权益、收入和支出。"), Document(page_content="主要的财务报表包括利润表、资产负债表和现金流量表。"), Document(page_content="公司的盈利能力可以通过利润表来评估。"), Document(page_content="资产负债表反映了公司在特定时间点的财务状况。")]embeddings = OpenAIEmbeddings()vectorstore = FAISS.from_documents(documents, embeddings)retriever = vectorstore.as_retriever()# 2. 初始化LLMllm = OpenAI(temperature=0) # 可以替换为其他LLM,如ChatOpenAI# 3. 定义文档格式化函数def format_docs(docs): """将检索到的文档列表格式化为单个字符串""" return "nn".join(doc.page_content for doc in docs)# 4. 构建动态RAG链# 链的输入将是一个字典,例如 {"question": "...", "lang": "..."}rag_chain = ( # 步骤1: 接收初始输入,并使用RunnablePassthrough.assign将检索结果添加到输入字典中 # RunnableLambda(retriever.get_relevant_documents) 包装了检索器方法, # .bind(input=lambda x: x["question"]) 确保检索器接收到输入字典中的"question"字段 RunnablePassthrough.assign( documents=RunnableLambda(retriever.get_relevant_documents).bind(input=lambda x: x["question"]) ) # 步骤2: 再次使用RunnablePassthrough.assign,将格式化后的文档作为"context"添加到输入字典中 | RunnablePassthrough.assign( context=lambda x: format_docs(x["documents"]) ) # 步骤3: 构建ChatPromptTemplate,它会从输入字典中获取"context"、"question"和"lang" | ChatPromptTemplate.from_template( "根据以下上下文信息:n{context}nn请回答问题: {question}n严格用{lang}语言回答。" ) # 步骤4: 调用LLM | llm # 步骤5: 解析LLM的输出为字符串 | StrOutputParser())
在这个链中:
RunnablePassthrough.assign(documents=…) 允许我们将检索器的结果(documents)添加到链的输入字典中,供后续步骤使用。RunnableLambda用于将一个普通函数(或方法)包装成一个Runnable。.bind(input=lambda x: x[“question”]) 是关键,它告诉RunnableLambda从当前的输入字典x中取出”question”作为检索器的输入。第二个 RunnablePassthrough.assign(context=…) 类似地,将格式化后的文档作为context添加到输入字典。ChatPromptTemplate.from_template(…) 会自动从其接收到的输入字典中查找{context}、{question}和{lang}对应的键值来填充模板。
Langserve部署
现在,我们将这个动态RAG链部署到Langserve应用中。
from fastapi import FastAPIfrom langserve import add_routesimport uvicorn# 创建FastAPI应用实例app = FastAPI( title="动态RAG应用", version="1.0", description="一个支持动态查询和语言的Langserve RAG应用。",)# 将RAG链添加到Langserve路由# input_type参数可以帮助Langserve Playground更好地展示输入字段add_routes( app, rag_chain, path="/dynamic_rag", input_type={"question": str, "lang": str}, # 可以在此处添加config_schema来进一步定义可配置项, # 但对于简单的动态输入,input_type已足够)if __name__ == "__main__": uvicorn.run(app, host="localhost", port=8000)
运行上述代码,然后访问 http://localhost:8000/dynamic_rag/playground。您会看到Langserve Playground自动生成了question和lang两个输入字段,允许您动态输入查询和目标语言。
注意事项与扩展
错误处理与输入验证: 在实际生产环境中,您应该为输入添加更健壮的验证机制,例如使用Pydantic模型来定义输入结构。异步操作: 对于高性能需求,可以考虑使用异步版本的LLM和检索器,并相应地调整链的构建。configurable_alternate 的应用: 虽然本教程主要通过标准链式组合实现动态输入,但Langchain的configurable_alternate在更复杂的场景下非常有用。例如,如果您想根据用户输入或配置动态地切换不同的检索器(如,对于财务问题使用财务检索器,对于技术问题使用技术检索器),那么configurable_alternate将是理想的选择。它允许您基于一个配置键来选择执行哪个Runnable。安全性: 部署到生产环境时,务必考虑API密钥的安全性,不要直接硬编码在代码中,而应使用环境变量或秘密管理服务。可观测性: 结合Langsmith等工具可以更好地监控和调试您的Langserve应用。
通过以上步骤,您已经成功构建了一个能够接收动态输入并由Langserve托管的RAG应用。这种方法提供了极大的灵活性,使得您的AI应用能够根据用户的具体需求提供定制化的响应。
以上就是Langserve中实现动态RAG应用:Langchain链式输入处理教程的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1378303.html
微信扫一扫
支付宝扫一扫