掌握Pandas中‘object’类型数据的数值分析与智能转换:以计算平均值为例

掌握pandas中'object'类型数据的数值分析与智能转换:以计算平均值为例

本教程详细讲解了在Pandas中处理包含数值信息的’object’类型数据以进行描述性统计分析的方法。针对数据集中常见的数值与单位混合、小数分隔符不一致等问题,文章提供了一套智能转换策略,通过逐列遍历和条件解析,将非标准数值字符串转换为可计算的浮点数,最终实现对这些复杂’object’列的平均值等统计量计算。

在数据分析过程中,我们经常会遇到Pandas DataFrame中某些列的数据类型被错误识别为object,但实际上这些列包含的是数值信息,例如”15.6 inches”、”2 – 4 kg”或”1 TB”。直接对这些object类型的列进行平均值、中位数等描述性统计计算会导致错误或无法进行。本教程旨在提供一套系统的方法,帮助用户识别、清理并智能转换这些看似复杂的数据,使其能够正确地进行数值分析。

数据探索与问题识别

首先,我们通过df.info()和df.head()来初步了解数据集的结构和数据类型。

import pandas as pdimport numpy as np# 假设数据已从 'data.xlsx' 加载df = pd.read_excel('data.xlsx')print(df.info())

从df.info()的输出中,我们可以看到许多列,如Memory Speed、Device Weight、Screen Size、GPU Memory Size、Max Processor Speed、RAM (System Memory)和SSD Capacity等,都被识别为object类型,但它们的名称明显暗示了数值含义。

df.head()的输出进一步证实了这一点,例如:

Memory Speed: “1066 MHz”, “3200 MHz”Device Weight: “2 – 4 kg”, “1 – 2 kg”Screen Size: “10 inches”, “15.6 inches”GPU Memory Size: “Shared”, “1 GB”, “2 GB”SSD Capacity: “1 TB”, “512 GB”Max Screen Resolution: “1920 x 1080”

直接使用df.describe(include=’all’)可以对所有列进行描述性统计,但对于非数值的object列,它只能提供计数、唯一值、最常见值等信息,无法计算平均值、标准差等数值统计量。例如,Backlit Keyboard列在df.info()中显示为int64,因此可以直接计算其平均值,但其他object列则不行。

‘Object’类型数据的挑战

当Pandas将一列识别为object类型时,通常意味着该列包含了混合数据类型(如字符串和数字),或者其所有值都是字符串,但这些字符串需要进一步解析才能提取数值。常见的挑战包括:

数值与单位混合: 例如 “15.6 inches”,需要提取 “15.6”。数值范围: 例如 “2 – 4 kg”,可能需要取中间值或转换为范围。小数分隔符不一致: 某些地区使用逗号作为小数分隔符(例如 “1,23” 而非 “1.23”)。特殊格式: 例如 “1920 x 1080” 表示分辨率,不直接是单个数值。单位转换: 例如 “1 TB” 和 “512 GB” 需要统一单位(如都转换为 TB)才能进行比较和计算。非数值描述: 例如 “Shared” (GPU Memory Size) 或 “Very Low” (Price),这些本身就不是数值。缺失值处理: NaN(Not a Number)或空字符串需要被正确识别和处理。

智能类型转换策略

为了对这些object类型的列进行数值分析,我们需要设计一个智能的转换流程。核心思想是遍历每个object类型的列,并对其中的每个值进行条件判断和解析。

以下是实现这一策略的Python代码示例:

import pandas as pdimport numpy as np# 假设 df 已经加载# df = pd.read_excel("Dataset.xlsx") # 使用你的实际文件名# 创建一个空的DataFrame副本,用于存储转换后的数据df_converted = pd.DataFrame(columns=df.columns)for col in df.columns: # 遍历原始DataFrame的每一列    if df[col].dtype == "object": # 检查列的数据类型是否为 'object'        converted_values = [] # 初始化一个列表,用于存储当前列转换后的值        for val in df[col].values: # 遍历当前列的每一个值            if pd.isna(val): # 如果是缺失值 (NaN),则直接添加 NaN                converted_values.append(np.nan)            elif isinstance(val, (int, float)): # 如果值已经是数字类型,直接添加                converted_values.append(val)            elif isinstance(val, str): # 确保值是字符串类型,以便进行字符串操作                val_stripped = val.strip() # 去除首尾空格                # 处理小数分隔符,将逗号替换为点                if "," in val_stripped:                    val_stripped = val_stripped.replace(",", ".")                # 尝试分割字符串以处理数值和单位                if " " in val_stripped:                    val_splitted = val_stripped.split(" ")                    if len(val_splitted) >= 2: # 如果分割后有多部分                        try:                            numeric_part = float(val_splitted[0])                            unit_part = val_splitted[1].lower() # 获取单位并转为小写                            if col == "SSD Capacity": # 特殊处理 SSD 容量列,进行单位统一                                if unit_part == "gb":                                    converted_values.append(numeric_part / 1000) # GB 转换为 TB                                elif unit_part == "tb":                                    converted_values.append(numeric_part)                                else: # 未知单位,保留原始值                                    converted_values.append(val)                            elif col == "Device Weight": # 处理 Device Weight 范围,取平均值                                if "-" in val_splitted[0]: # "2-4" 这种形式                                    try:                                        lower, upper = map(float, val_splitted[0].split('-'))                                        converted_values.append

以上就是掌握Pandas中‘object’类型数据的数值分析与智能转换:以计算平均值为例的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1382622.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月15日 00:04:58
下一篇 2025年12月15日 00:22:25

相关推荐

  • python中字典dict函数是如何使用的?

    Python中字典用于存储键值对,可通过花括号直接定义或dict()函数创建;dict()支持关键字参数、元组列表和复制字典三种方式;常见操作包括增删改查,如添加d[‘key’]=’value’、判断键是否存在等,使用灵活方便。 字典(dict)在Py…

    2025年12月15日
    000
  • python中如何删除dict元素?

    del 删除指定键,键不存在时抛出 KeyError;2. pop() 删除键并返回值,可设默认值避免错误;3. popitem() 删除并返回最后一个键值对;4. clear() 清空所有元素。 在 Python 中删除字典(dict)元素有几种常用方法,根据不同的使用场景可以选择合适的方式。 使…

    2025年12月15日
    000
  • python中exp函数如何实现指数计算?

    Python中exp函数用于计算e的x次方,主要通过math模块和numpy模块实现;math.exp()适用于单个数值,如math.exp(2)返回约7.389;而numpy.exp()可处理数组或列表,支持逐元素计算,适合批量数据处理;注意math.exp()仅接受实数,不支持列表或复数,传入非…

    2025年12月15日
    000
  • python引入模块的import语句

    import语句用于引入模块以提高代码复用性,基本语法为import模块名;可通过as设置别名如import numpy as np;使用from…import可导入特定内容如from datetime import datetime;避免使用from module import *以防…

    2025年12月15日
    000
  • Python NameError 的常见原因与解决方法

    NameError通常由未定义变量、拼写错误、作用域问题或未导入模块引起。1. 使用前需定义变量;2. 注意名称大小写和拼写;3. 局部变量不可在外部访问,可通过返回值传递;4. 调用函数前应导入相应模块,如from math import sqrt。 在使用 Python 编程时,NameErro…

    2025年12月15日
    000
  • 使用Python和IMAPLIB在Gmail中创建HTML邮件草稿的教程

    本教程详细介绍了如何使用%ignore_a_1%的`imaplib`库在gmail中创建可正确渲染的html邮件草稿。核心在于通过设置邮件消息的`content-type`头部为`text/html;charset=utf-8`,确保html内容在gmail草稿中被解析而非显示为纯文本。文章将提供完…

    2025年12月15日
    000
  • 在SLURM中通过Python脚本调用srun的性能影响分析与实践

    本文探讨了在SLURM高性能计算环境中,通过Bash脚本提交一个Python脚本,该Python脚本进而使用`srun`启动大规模并行工作负载的性能考量。研究表明,Python脚本作为中间协调层在启动阶段引入的开销微乎其微,对后续大规模并行计算的运行时性能影响可忽略不计。 SLURM任务编排:Pyt…

    2025年12月15日
    000
  • Python Logging是什么?

    Python Logging模块用于记录程序运行信息,支持DEBUG、INFO、WARNING、ERROR、CRITICAL五个级别,默认只显示WARNING及以上级别;通过basicConfig可设置日志级别、格式和输出目标(如控制台和文件),支持灵活配置处理器和格式化,便于开发调试与生产监控,建…

    2025年12月15日
    000
  • Python requests-html 多语言网页内容抓取与翻译实践

    在使用 Python 的 `requests-html` 库进行网页抓取时,仅设置 `Accept-Language` 请求头并不能保证服务器返回目标语言内容。本文将深入探讨 `Accept-Language` 的实际作用,并提供一套完整的解决方案,通过结合 `requests-html` 抓取数据…

    2025年12月15日
    000
  • 解决Kivy安装失败:Python版本兼容性问题指南

    kivy安装失败通常是由于python版本不兼容。本文详细解析了当kivy尚不支持最新python版本(如3.12)时,如何通过选择合适的python环境或使用虚拟环境来成功安装kivy,确保开发环境的稳定性和兼容性。 理解Kivy安装失败的常见原因 在尝试使用pip install kivy命令安…

    2025年12月15日
    000
  • Python高效生成与存储大规模内存访问轨迹教程

    本教程旨在解决在python中高效生成并存储大规模内存访问轨迹的问题,特别是针对需要特定文本格式的内存模拟器。文章将详细介绍如何通过直接文件写入而非传统的`print()`函数,有效避免内存和性能瓶颈,并提供清晰的示例代码,展示如何格式化32位地址及读写操作,以实现专业且可扩展的数据生成方案。 在进…

    2025年12月15日
    000
  • 深入理解Python sys.argv:命令行参数处理与常见错误解析

    本文详细解析python中`sys.argv`模块在处理命令行参数时的核心机制,特别是其长度计算和索引规则。我们将通过示例代码阐明`sys.argv[0]`代表脚本名称,而后续元素才是用户提供的参数,从而纠正常见的参数数量判断错误。同时,提供实用的调试技巧和更专业的参数解析方案,帮助开发者有效管理p…

    2025年12月15日
    000
  • 深入理解NumPy数组的形状与维度:从一维到多维的创建与转换

    本文旨在深入探讨NumPy数组的形状(shape)和维度(ndim)概念,重点解析一维数组与二维数组在创建时的区别,以及为何 `np.array([x, y])` 默认生成一维数组 `(2,)` 而非二维 `(1, 2)`。文章将通过示例代码详细演示如何精确控制数组的维度,并介绍多种将一维数组转换为…

    2025年12月15日
    000
  • 在Markdown中集成Python数据:动态内容生成指南

    本文旨在解决如何在Markdown文档中动态展示Python程序生成的数据,而非简单地简单地显示代码块。我们将探讨两种主要方法:一是通过Python程序结合模板引擎(如Jinja2)动态生成Markdown文件,适用于需要更新`README.md`等静态文档的场景;二是利用文学编程工具(如Pweav…

    2025年12月15日
    000
  • 使用Python监控动态网页库存并发送Discord通知:从静态抓取到无头浏览器

    本文旨在指导读者如何使用Python构建一个商品库存监控机器人,并实时通过Discord发送通知。文章将深入探讨在面对JavaScript动态加载内容的网站时,传统网页抓取工具(如BeautifulSoup)的局限性,并详细介绍如何利用无头浏览器(如Selenium)来模拟用户行为、获取动态数据,最…

    2025年12月15日
    000
  • Python面向对象设计:构建可扩展的多层级数据结构

    本文探讨了在python中如何优雅地设计具有多层级、可变子对象结构的类。通过引入对象组合(object composition)模式,我们展示了如何创建独立的子实体类,并将其作为集合嵌入到主实体类中,从而实现灵活管理动态数量的关联属性,避免了传统扁平化设计中可能出现的冗余和复杂性,提升了代码的可读性…

    2025年12月15日
    000
  • Pandas groupby 性能优化:实现高效数据聚合

    本文深入探讨了pandas `groupby`操作在处理大规模数据时可能出现的性能瓶颈,特别是当结合`agg`方法进行多重聚合或使用自定义函数时。文章提出并详细演示了一种“懒惰式groupby”的优化策略,通过预先创建`groupby`对象,然后对每个列单独执行聚合操作,显著提升了数据聚合的效率。文…

    2025年12月15日
    000
  • 优化XGBoost海量数据加载策略:兼顾内存效率与并发读取

    本文旨在解决使用pandas和多进程读取海量csv文件进行xgboost训练时遇到的内存瓶颈。核心策略包括利用xgboost的dmatrix外部内存机制处理超大数据集,以及优化pandas数据加载流程,具体涉及将i/o密集型任务切换至线程池执行器,并采用一次性批量拼接dataframe以提高效率并降…

    2025年12月15日
    000
  • Python中安全获取嵌套JSON数据中的图片URL

    本教程详细介绍了如何在Python中从复杂的JSON响应中安全地提取嵌套数据,特别是图片URL。文章通过实际案例演示了如何使用字典的`get()`方法来优雅地处理可能缺失的键,从而避免`KeyError`,并构建健壮的数据解析逻辑。 在Python开发中,我们经常需要与Web API交互,这些API…

    2025年12月15日
    000
  • 高效从DataFrame批量数据导入Redshift:优化策略与实践指南

    本文旨在提供从pandas dataframe高效批量导入数据至amazon redshift数据库的优化策略。针对传统逐行或小批量插入效率低下的问题,我们将深入探讨两种核心方法:利用多行插入(multi-row inserts)优化sql语句,以及采用redshift官方推荐的copy命令结合s3…

    2025年12月15日
    000

发表回复

登录后才能评论
关注微信