Golangencoding/gob对象序列化与反序列化示例

Go语言的encoding/gob包提供高效的Go专用二进制序列化,适用于Go程序间数据传输。使用时需导入”encoding/gob”和”bytes”,结构体字段须首字母大写才能被编码。序列化通过gob.NewEncoder将对象写入字节流,反序列化用gob.NewDecoder从字节流还原对象。例如Person{Name: “Alice”, Age: 30, City: “Beijing”}可成功编码为字节并解码还原。注意gob不跨语言,类型必须匹配,复杂类型需提前注册,避免编码nil值。在内部服务通信或缓存中,gob是轻量高效的选择。

golangencoding/gob对象序列化与反序列化示例

Go语言中的

encoding/gob

包用于对Go对象进行高效的序列化和反序列化,适合在Go程序之间传输或存储数据。它不同于JSON或XML,gob是Go专用的二进制格式,性能更高,但不具备跨语言兼容性。

基本用法说明

使用

gob

前需导入

"encoding/gob"

"bytes"

等基础包。序列化过程将Go结构体写入字节流,反序列化则从字节流还原结构体。注意:结构体字段必须是可导出的(首字母大写),否则不会被编码。

序列化示例

以下代码展示如何将一个结构体对象序列化为字节流:

package main

立即学习“go语言免费学习笔记(深入)”;

import (

  “bytes”

  “encoding/gob”

  “fmt”

)

type Person struct {

  Name string

  Age  int

  City string

}

func main() {

  person := Person{Name: “Alice”, Age: 30, City: “Beijing”}

  var buf bytes.Buffer

  encoder := gob.NewEncoder(&buf)

  err := encoder.Encode(person)

  if err != nil {

    fmt.Println(“编码失败:”, err)

    return

  }

  data := buf.Bytes()

  fmt.Printf(“序列化结果: %vn”, data)

}

反序列化示例

接下来,将上面生成的字节流还原为原始对象:

var decodedPerson Person

buf := bytes.NewBuffer(data)

decoder := gob.NewDecoder(buf)

err = decoder.Decode(&decodedPerson)

if err != nil {

  fmt.Println(“解码失败:”, err)

  return

}

fmt.Printf(“反序列化结果: %+vn”, decodedPerson)

输出结果为:

反序列化结果: {Name:Alice Age:30 City:Beijing}

,说明数据成功还原。

注意事项

使用

gob

时需注意以下几点:

只能在Go程序间使用,不适用于与其他语言交互 结构体类型在序列化与反序列化时必须完全匹配 首次编码前应注册复杂自定义类型(使用

gob.Register()

) 不要对未初始化的指针或nil值直接编码,可能导致panic

基本上就这些。对于内部服务通信或缓存场景,gob是一个轻量且高效的选择。

以上就是Golangencoding/gob对象序列化与反序列化示例的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1407301.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月15日 23:03:08
下一篇 2025年12月15日 23:03:21

相关推荐

  • Golang导入第三方库与版本控制方法

    Go Modules通过go.mod文件实现依赖的精确版本管理,解决了GOPATH时代无版本控制、依赖混乱的问题。它采用MVS算法自动选择兼容的最低版本,并支持go get更新、replace替换路径、go mod tidy整理依赖,结合go mod graph和go mod why等命令可分析依赖…

    好文分享 2025年12月15日
    000
  • Go语言:高效且地道地将字符串切片转换为字节切片数组

    本文探讨了在Go语言中将字符串切片([]string)转换为#%#$#%@%@%$#%$#%#%#$%@_55a8e98da9231eac++06f50e686f7f7a21切片数组([][]byte)的两种常用且地道的方法。我们将比较使用 append 动态增长切片与使用 make 预分配内存的两…

    2025年12月15日
    000
  • Go语言中高效处理子进程标准输出流的实践指南

    本文旨在指导读者在Go语言中如何优雅地处理子进程的标准输出流,特别是针对长时间运行的程序。我们将对比手动通过StdoutPipe读取输出的传统方法,并重点介绍如何利用exec.Cmd结构体的Stdout字段直接将子进程输出重定向到父进程的标准输出或其他io.Writer,从而简化代码并提高效率。 引…

    2025年12月15日
    000
  • Go语言中优雅地处理子进程标准输出流

    本文探讨了在Go语言中如何高效且优雅地处理子进程的标准输出流,特别是对于长时间运行的程序。通过对比手动循环读取与Go标准库提供的exec.Cmd.Stdout直接赋值方法,展示了如何利用io.Writer接口将子进程输出直接重定向到父进程的标准输出,从而避免了复杂的缓冲区管理和循环逻辑,显著提升了代…

    2025年12月15日
    000
  • Golang函数返回指针与安全性考虑

    返回指针可提升性能并允许修改数据,但需注意封装性与并发安全。Go通过逃逸分析确保局部变量指针安全,但滥用指针可能导致状态暴露、数据竞争和生命周期管理困难。应优先返回值类型,必要时通过工厂函数创建对象,使用锁保护共享状态,并以接口隐藏实现细节。改进方案如添加RWMutex实现并发安全访问,避免直接暴露…

    2025年12月15日
    000
  • Go语言:高效转换字符串切片到字节切片数组的实践

    本文探讨Go语言中如何将字符串切片([]string)高效转换为字节切片数组([][]byte)。我们将比较两种主要方法:动态使用append追加元素,以及通过make预分配内存后进行索引赋值。文章将分析这两种方法的优缺点,并提供示例代码,帮助读者根据实际场景选择最合适的实现方式,以编写更具Go语言…

    2025年12月15日
    000
  • Go App Engine项目结构与包管理:早期GOPATH限制及应对策略

    本文探讨了Go App Engine早期版本在处理Go语言标准GOPATH项目结构时面临的挑战。由于当时的GAE SDK不支持直接上传GOPATH中的外部包,开发者在集成自定义库时常遇到“包未找到”错误。文章详细阐述了这一限制,并提供了当时唯一可行的临时解决方案——手动复制依赖包,同时指出了该方法的…

    2025年12月15日
    000
  • Go语言中空白标识符 _ 的多功能应用:从变量丢弃到编译时检查

    Go语言中的空白标识符 _ 并非简单的占位符,它在程序开发中扮演着至关重要的角色。_ 允许开发者明确地丢弃不需要的函数返回值、避免未使用的变量或导入引起的编译错误,并在编译时进行类型接口实现断言、常量范围检查等高级操作,从而提升代码的清晰度和健壮性。 在go语言编程中,我们经常会遇到一个看似奇怪的现…

    2025年12月15日
    000
  • Go语言中优化长随机字符串生成:从io.Reader到高性能实现

    本文深入探讨了在Go语言中高效生成长随机字符串的方法。通过实现一个基于io.Reader的自定义随机数据源,并逐步优化其Read方法的实现,包括减少随机数生成器的调用频率和移除冗余操作,最终实现了高达数倍的性能提升,同时介绍了该模型在实际应用中的灵活性。 在go语言中,生成长随机字符串(例如2kb或…

    2025年12月15日
    000
  • Golang中间件设计与请求处理技巧

    Golang中间件本质是职责链模式在HTTP处理中的应用,通过包装http.Handler实现请求的预处理与后处理,支持日志、认证、超时控制等横切关注点。其核心在于利用context.Context管理请求生命周期,传递请求数据并实现取消与超时机制,同时结合标准库高效解析请求参数,避免资源泄露。高性…

    2025年12月15日
    000
  • GolangRPC负载均衡与客户端策略示例

    Go语言通过gRPC内置的Resolver和Balancer实现客户端负载均衡,结合etcd等注册中心完成服务发现;支持Round Robin、Random、Least Request及Consistent Hashing等策略,可基于场景选择或自定义;配合健康检查与重试机制,提升系统可用性与伸缩性…

    2025年12月15日
    000
  • Golang中介者模式在UI组件通信应用

    中介者模式通过引入中介者对象封装组件交互,实现UI组件解耦。在Go中利用接口和组合,定义Component和Mediator接口,由FormMediator集中处理Input、Button、Notifier等组件事件,使组件无需直接引用彼此。输入框内容变化时自动启用按钮,点击按钮后提示框显示输入内容…

    2025年12月15日
    000
  • Golangchannel与goroutine结合实现管道模式

    管道模式利用goroutine和channel实现数据的多阶段处理,适用于ETL、图像处理等场景。示例中通过gen生成数据、square计算平方,最后消费结果,形成“生产-传输-消费”流程。可扩展为多阶段,并通过扇出(多个worker并行)和扇入(合并结果)提升性能。使用定向channel增强类型安…

    2025年12月15日
    000
  • Google App Engine开发中避免静态文件修改引发服务器重启的策略

    本文探讨了在Google App Engine (GAE) 开发环境中,如何解决因静态文件(如HTML、CSS、JS)修改导致服务器不必要重启的问题,尤其是在Go运行时与Python后端交互的场景下。核心策略是利用外部服务(如CDN或云存储)托管静态资源,将它们与主应用程序解耦。通过这种方式,当静态…

    2025年12月15日
    000
  • Golang职责链模式处理请求传递示例

    职责链模式通过将请求沿处理者链条传递实现解耦,适用于多阶段验证或复杂业务逻辑。代码中定义了Handler接口和BaseHandler基础结构,构建了认证、验证、业务处理三个处理器,每个处理器可独立决定是否处理请求或转发给下一节点,最终实现灵活、可扩展的请求处理流程。 在Go语言中,职责链模式(Cha…

    2025年12月15日
    000
  • Golang使用Helm管理应用部署实践

    使用Helm部署Golang应用可大幅提升Kubernetes上部署的效率与一致性。通过Helm Chart将Deployment、Service、Ingress等资源模板化,结合values.yaml参数配置,实现多环境统一管理。首先构建Golang应用的Docker镜像并推送到仓库,再创建Hel…

    2025年12月15日
    000
  • 解决Go并发代码中的Deadlock问题:Goexit与WaitGroup的使用

    本文旨在帮助Go语言初学者理解和解决并发代码中常见的deadlock问题。通过分析一个包含runtime.Goexit()和time.After()的示例代码,我们将深入探讨Goexit()的正确使用方式以及如何利用sync.WaitGroup来优雅地等待goroutine完成,从而避免deadlo…

    2025年12月15日
    000
  • GolangRPC双向流通信开发实践

    gRPC双向流模式允许客户端和服务端通过持久连接独立收发消息,适用于实时通信场景。在Go中,通过Protobuf定义stream类型接口,服务端使用Recv和Send处理流数据,客户端则用协程分离读写操作,需注意连接管理、错误重连与资源释放。 在分布式系统开发中,Go语言(Golang)凭借其轻量级…

    2025年12月15日
    000
  • Golang使用reflect实现结构体深拷贝方法

    Go的赋值操作不足以实现结构体深拷贝,因为其默认为浅拷贝,仅复制字段值而不递归复制引用类型指向的数据。当结构体包含指针、切片或映射时,赋值仅复制引用地址,导致新旧结构体共享同一底层数据,修改一方会影响另一方。 在Golang中,当我们谈及结构体的深拷贝,尤其是当结构体内部包含指针、切片或映射这类引用…

    2025年12月15日
    000
  • Golang网络编程基础与TCP连接示例

    Golang网络编程的核心是net包,它支持TCP、UDP、IP和Unix域套接字等协议。通过net.Listen监听端口,Accept接受连接,并使用goroutine并发处理多个客户端请求,实现高效服务器。TCP提供可靠连接,适用于Web服务和数据库通信;UDP无连接,适合实时性要求高的场景如游…

    2025年12月15日
    000

发表回复

登录后才能评论
关注微信