C++内存分配异常 new_handler机制

new_handler是C++中用于处理内存分配失败的机制,通过set_new_handler设置自定义函数,在operator new失败时被调用,可尝试释放资源或通知用户,之后重试分配,若仍失败则抛出bad_alloc异常。

c++内存分配异常 new_handler机制

在C++中,动态内存分配是通过 operator new 完成的。当系统内存不足、无法满足分配请求时,默认行为是抛出 std::bad_alloc 异常。但C++提供了一种机制来干预这一过程——new_handler 机制,允许我们在内存分配失败前做一些清理或补救工作。

什么是 new_handler?

new_handler 是一个函数指针类型,指向一个无参数、无返回值的函数:

typedef void (*new_handler)();

这个函数在 operator new 分配失败、准备抛出异常前被调用。我们可以设置一个自定义的处理函数,尝试释放一些内存、通知用户,或让程序进入更可控的状态。

如何设置和使用 new_handler

通过 std::set_new_handler 函数可以设置当前的 new_handler。该函数接受一个 new_handler 类型的函数指针,并返回之前设置的 handler。

立即学习“C++免费学习笔记(深入)”;

示例代码:

#include
#include

void my_new_handler() {
   std::cerr    // 这里可以尝试释放缓存、通知GC(如果有)、或 sleep 一下
   // 如果无法释放内存,可以抛出 std::bad_alloc 或调用 abort()
   throw std::bad_alloc();
}

int main() {
   std::set_new_handler(my_new_handler);

   try {
      while (true) {
         new int[100000000]; // 持续申请大块内存
      }
   } catch (const std::bad_alloc& e) {
      std::cerr    }
   return 0;
}

在这个例子中,每当 operator new 分配失败时,都会调用 my_new_handler。我们可以在这个函数中尝试释放程序内部缓存的对象,或者提醒用户内存紧张。

new_handler 的调用逻辑

当 operator new 无法分配内存时,它会检查是否存在已注册的 new_handler:

如果设置了 handler,调用它 handler 返回后,operator new 会再次尝试分配内存(循环) 如果仍失败,继续调用 handler(如果还存在) 如果 handler 被设为 nullptr 或 handler 抛出异常,则停止尝试,抛出 std::bad_alloc

这意味着,只要 handler 能释放出足够内存,后续分配就可能成功。

实际应用场景

new_handler 机制适用于需要高可靠性的系统,比如:

嵌入式系统:内存紧张时释放非关键缓存 服务器程序:在内存不足时清理会话缓存或日志缓冲区 游戏引擎:卸载不活跃的资源(贴图、模型)以腾出空间

注意:在 handler 中应避免复杂操作,不能无限等待或死锁,否则程序会卡住。

基本上就这些。new_handler 提供了一种优雅的内存分配失败应对方式,让程序有机会“自救”,而不是直接崩溃。虽然现代系统内存较大,但对资源敏感的场景仍值得考虑使用。

以上就是C++内存分配异常 new_handler机制的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1472097.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月18日 19:20:39
下一篇 2025年12月18日 19:20:55

相关推荐

  • C++11的final关键字用在何处 阻止类继承或虚函数重写的机制

    c++++11引入的final关键字用于限制类的继承或虚函数的重写,具有明确语义而非语法糖。1. 用在类定义上时,禁止继承,适用于设计封闭或需性能优化的类;2. 用在虚函数上时,禁止重写,适用于关键方法不可变的场景,且不能与override共用;3. 实际开发中用于稳定设计、防止逻辑破坏或提升性能,…

    2025年12月18日 好文分享
    000
  • C++函数指针如何定义 回调函数机制解析

    函数指针用于指向函数地址,语法为返回类型(*指针名)(参数列表),可用来实现回调机制;回调函数通过函数指针作为参数传递,由被调用方在适当时机执行,常用于事件处理、排序算法和异步操作,提升代码灵活性和复用性。 在C++中,函数指针和回调机制是实现灵活程序设计的重要手段,尤其在事件处理、异步操作和库函数…

    2025年12月18日
    000
  • C++动态库边界异常怎么处理 跨模块异常抛捕获注意事项

    c++++异常跨越dll边界会出问题的根本原因在于不同模块可能使用不兼容的c++运行时库(crt),导致异常对象的内存管理、类型识别和栈展开机制不一致。1. 统一运行时库:所有模块必须使用相同版本和链接方式的crt(如windows上统一使用/md或/mdd);2. 避免跨模块抛出c++异常:推荐在…

    2025年12月18日 好文分享
    000
  • C++17结构化绑定怎么用 tuple和结构体解包技巧

    结构化绑定允许从复合类型中直接解包成员到独立变量,提升代码可读性与简洁性,支持结构体、tuple、pair及数组,通过auto [var1, var2]语法实现,避免繁琐的get或first/second访问,尤其在处理多返回值函数和map遍历时更直观高效,但需注意生命周期问题及临时对象的引用绑定风…

    2025年12月18日
    000
  • C++抽奖程序实现 随机选择与名单管理

    答案是使用vector管理名单并用random库实现高质量随机抽取。程序以vector存储姓名,通过mt19937和uniform_int_distribution生成均匀随机索引,确保抽奖公平,支持名单增删查及中奖后移除,可扩展文件读写与交互功能。 想要实现一个简单的C++抽奖程序,关键在于两个核…

    2025年12月18日
    000
  • 怎样利用C++20协程提升IO性能 无栈协程在网络编程中的应用

    c++++20协程通过无栈特性与co_await机制简化异步编程,有效解决传统io模型的性能瓶颈。1. 无栈协程将状态存储于堆上的“协程帧”,大幅减少内存占用;2. co_await使异步操作以同步方式编写,避免回调地狱;3. 协程切换在用户空间完成,降低上下文切换开销;4. 一个线程可管理成千上万…

    2025年12月18日 好文分享
    000
  • C++内存模型基础 多线程内存访问规则

    C++内存模型通过happens-before和synchronizes-with关系,利用std::atomic和内存屏障确保多线程下操作的可见性与顺序性,防止数据竞争;其中memory_order提供不同强度的排序控制,release-acquire配对可实现高效同步,而seq_cst提供最强一…

    2025年12月18日
    000
  • C++异常处理演进 C++11到C++20改进

    从C++11到C++20,异常处理通过noexcept关键字强化、异常规范纳入类型系统、隐式异常规范移除及与移动语义协同优化,提升了类型安全与性能。C++11引入noexcept用于声明函数不抛异常,助编译器优化,如std::vector优先选用noexcept移动构造;C++17使异常规范成为函数…

    2025年12月18日
    000
  • C++内存碎片怎么处理 内存整理算法实现

    内存碎片可通过内存池和分层分配器缓解。使用对象池预分配大块内存,按固定大小管理,减少外部碎片;采用slab分配将对象按尺寸分类,提升分配效率;避免内存整理因指针失效和性能开销大。推荐使用jemalloc或tcmalloc替代默认分配器,结合RAII与智能指针,优化分配模式预防碎片。 内存碎片是C++…

    2025年12月18日
    000
  • C++装饰器模式 动态添加对象功能

    装饰器模式通过组合动态扩展对象功能,避免继承导致的类爆炸,适用于C++中需灵活添加职责的场景。 在C++中实现装饰器模式,可以灵活地在运行时动态添加对象功能,而不改变原有类的结构。这种设计模式属于结构型模式,核心思想是通过组合的方式,为对象添加新行为,避免使用继承带来的类爆炸问题。 装饰器模式的基本…

    2025年12月18日
    000
  • C++缓存友好编程 提升数据局部性原则

    提升数据局部性需优化内存布局与访问模式:优先使用std::vector等连续容器,避免节点分散结构;多维数组用一维存储并按行优先遍历;采用结构体数组(SoA)拆分字段以减少冗余加载;减小对象大小以提升缓存容量利用率,合理排列字段降低对齐填充;循环中合并操作、缓存引用以复用热点数据,确保空间连续性与时…

    2025年12月18日
    000
  • C++异常安全代码 RAII资源管理技术实践

    RAII通过对象生命周期管理资源,确保异常安全。利用构造函数获取资源、析构函数释放资源,结合智能指针、lock_guard及自定义RAII类,可自动释放内存、文件句柄、互斥锁等,避免泄漏与死锁,是C++异常安全的核心机制。 在C++中编写异常安全的代码是构建稳定、可靠系统的关键。当异常发生时,若资源…

    2025年12月18日
    000
  • C++目录操作实现 创建删除遍历目录

    C++17的模块通过统一跨平台API、提供路径安全操作和异常处理机制,简化了目录的创建、删除与遍历,避免了系统差异和字符串误操作,成为现代C++文件系统操作的首选方案。 C++中对目录进行创建、删除和遍历,在现代C++(特别是C++17及更高版本)中,主要通过标准库中的 模块来实现。这个模块提供了一…

    2025年12月18日
    000
  • C++ map容器排序 红黑树实现与性能

    std::map通过红黑树实现键的有序性,插入、删除、查找时间复杂度均为O(log n)。1. 红黑树是自平衡二叉搜索树,通过颜色规则和旋转操作保持平衡,避免退化为链表。2. 插入新元素时按比较规则(默认std::less)确定位置,维护有序性。3. 节点包含键值、指针和颜色信息,内存开销较大,缓存…

    2025年12月18日
    000
  • C++模板递归实例化 可变参数模板处理

    C++模板递归通过编译时递归展开参数包,结合基线版本终止递归,实现类型安全的变参处理;常见陷阱包括缺失基线函数、未使用std::forward导致值类别丢失,以及深度递归带来的编译性能问题;C++17折叠表达式可简化如打印、求和等线性操作,但复杂逻辑仍需递归模板支持。 C++模板递归实例化处理可变参…

    2025年12月18日
    000
  • C++ stack适配器 后进先出数据结构应用

    C++ stack适配器基于vector、deque或list实现LIFO结构,提供push、pop、top操作,适用于括号匹配、表达式求值等场景,可通过自定义容器实现有界栈以满足特定需求。 C++ stack 适配器本质上是利用现有的容器(如 vector 、 deque 或 list )来实现后…

    2025年12月18日
    000
  • C++ nullptr优势 类型安全空指针方案

    nullptr通过引入类型安全的空指针常量解决了NULL在重载解析中的歧义问题,其独特类型std::nullptr_t确保只能隐式转换为指针类型,避免了与整型混淆,提升代码健壮性与可读性。 在C++中, nullptr 是表示空指针的唯一、类型安全的方案。它彻底解决了C语言时代沿袭下来的 NULL …

    2025年12月18日
    000
  • C++字符串如何处理 string类常用方法

    std::string相比C风格字符串具有内存自动管理、丰富API、操作符重载、边界安全检查和RAII特性等优势,显著提升代码安全性与可读性;其核心方法如find、replace、reserve及C++17的string_view进一步优化了查找、替换与性能表现,适用于绝大多数现代C++场景。 C+…

    2025年12月18日 好文分享
    000
  • C++20概念约束 模板参数限制语法

    C++20的概念约束通过定义编译期谓词来限制模板参数类型,提升错误信息可读性、代码可维护性和编译时检查能力,支持更清晰的重载解析,相比std::enable_if语法更简洁、效率更高,广泛应用于数值计算、容器、算法和网络库等场景。 C++20的概念约束,简单来说,就是给模板参数加上了更严格的类型限制…

    2025年12月18日
    000
  • C++文件操作需要哪些头文件 iostream fstream包含关系解析

    C++文件操作依赖和头文件,前者提供std::ifstream、std::ofstream和std::fstream类用于文件读写,后者定义std::istream和std::ostream基类,实现流操作统一接口。文件流类继承自iostream基类,复用>>和 C++进行文件操作,核心…

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信