如何在C++中实现一个观察者模式_C++观察者设计模式实现教程

观察者模式适用于GUI事件处理、消息队列、发布订阅系统、游戏开发等场景,通过解耦实现一对多状态同步;其与发布-订阅模式区别在于同步 vs 异步、直接依赖 vs 中间解耦。

如何在c++中实现一个观察者模式_c++观察者设计模式实现教程

观察者模式是一种行为设计模式,用于在对象之间建立一种一对多的依赖关系,当一个对象(被观察者)的状态发生改变时,所有依赖于它的对象(观察者)都会收到通知并自动更新。核心在于解耦,让被观察者和观察者之间的联系更加松散。

#include #include class Observer {public:    virtual void update(int state) = 0;};class Subject {public:    virtual void attach(Observer* observer) = 0;    virtual void detach(Observer* observer) = 0;    virtual void notify() = 0;};class ConcreteSubject : public Subject {private:    std::vector observers;    int state;public:    void attach(Observer* observer) override {        observers.push_back(observer);    }    void detach(Observer* observer) override {        for (auto it = observers.begin(); it != observers.end(); ++it) {            if (*it == observer) {                observers.erase(it);                return;            }        }    }    void notify() override {        for (Observer* observer : observers) {            observer->update(state);        }    }    void setState(int state) {        this->state = state;        notify();    }    int getState() {        return state;    }};class ConcreteObserver : public Observer {private:    ConcreteSubject* subject;    int observerState;public:    ConcreteObserver(ConcreteSubject* subject) : subject(subject) {}    void update(int state) override {        observerState = state;        std::cout << "Observer state updated to: " << observerState <attach(observer1);    subject->attach(observer2);    subject->setState(10);    subject->setState(20);    subject->detach(observer1);    subject->setState(30);    delete observer1;    delete observer2;    delete subject;    return 0;}

观察者模式在实际项目中的应用场景有哪些?

观察者模式在很多场景下都非常有用。比如,在GUI编程中,当用户点击一个按钮时,多个组件可能需要响应这个事件。再比如,在消息队列系统中,当有新消息到达时,多个消费者可能需要处理这个消息。 还可以用于实现发布-订阅系统,例如社交媒体中的关注和推送功能。甚至在游戏开发中,角色的状态变化需要通知UI进行更新,也常常使用观察者模式。总的来说,任何需要实现一对多依赖关系,并且希望解耦这些依赖关系的地方,都可以考虑使用观察者模式。

如何避免观察者模式中的循环依赖问题?

立即学习“C++免费学习笔记(深入)”;

循环依赖是一个需要注意的问题。例如,观察者A更新后通知被观察者B,被观察者B又通知观察者A,这样就形成了一个循环。解决这个问题的方法有很多。一种方法是在更新通知之前,设置一个标志位,表示当前正在更新,避免重复通知。另一种方法是使用更高级的消息队列,例如RabbitMQ或Kafka,它们可以处理复杂的依赖关系,并且可以避免循环依赖。此外,设计时可以考虑引入中间层,例如事件总线,来解耦观察者和被观察者之间的直接依赖关系。

观察者模式与发布-订阅模式有什么区别和联系?

观察者模式和发布-订阅模式经常被混淆,但它们之间还是有一些区别的。观察者模式通常是同步的,被观察者直接调用观察者的更新方法。而发布-订阅模式通常是异步的,发布者将消息发送到消息队列,订阅者从消息队列中获取消息。此外,观察者模式中,观察者通常知道被观察者的存在,而发布-订阅模式中,发布者和订阅者通常不知道彼此的存在,它们通过消息队列进行解耦。 观察者模式可以看作是发布-订阅模式的一个简化版本,更适用于对象之间存在直接依赖关系的情况。而发布-订阅模式更适用于大规模、分布式的系统,需要更高的灵活性和可扩展性。

以上就是如何在C++中实现一个观察者模式_C++观察者设计模式实现教程的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1476288.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月19日 00:07:42
下一篇 2025年12月19日 00:07:59

相关推荐

  • 如何在C++中检查map中是否存在某个键_C++ map键存在性判断方法

    使用find()、count()或C++20的contains()可判断std::map中键是否存在;推荐find()因能同时获取值且避免重复查找,C++20中contains()语义更清晰;需避免operator[]隐式插入导致的意外行为。 在C++的 std::map 中判断一个键是否存在,我们…

    2025年12月19日
    000
  • 如何在C++中从vector中删除一个元素_C++ vector元素删除操作详解

    C++中删除vector元素需注意迭代器失效,推荐使用erase配合remove或remove_if实现高效删除,避免直接遍历删除导致未定义行为。 在C++中,从 std::vector 中删除元素并非简单地按个键就能完成,它涉及几种不同的策略,核心在于理解迭代器失效和容器底层机制。最常见且推荐的方…

    2025年12月19日
    000
  • C++文件读取中的字符串解析与分割方法

    答案:C++中常用std::getline结合stringstream按分隔符解析字符串,适用于CSV等格式;对复杂分隔符可手动使用find与substr实现;C++17可用string_view提升性能;正则表达式适合提取单词或数字等模式;需注意空行、空格和编码处理以保证健壮性。 在C++中处理文…

    2025年12月19日
    000
  • C++联合体与结构体成员混合使用

    C++中结构体与联合体可混合使用,通过标签联合体实现内存优化,但需避免未定义行为;现代替代方案如std::variant提供类型安全的多类型存储。 C++中,结构体(struct)和联合体(union)的成员确实可以混合使用,这种做法在特定场景下能提供强大的内存优化和数据表示能力。然而,它也像一把双…

    2025年12月19日
    000
  • C++如何实现原型模式对象复制

    答案是通过抽象基类声明克隆接口,具体类实现深拷贝逻辑,并由原型工厂管理对象复制。定义Prototype基类含纯虚clone函数,ConcretePrototype类重写clone方法调用拷贝构造函数实现深拷贝,PrototypeFactory用映射存储注册的原型并按需克隆,客户端通过键创建副本,避免…

    2025年12月19日
    000
  • C++移动构造函数与移动赋值优化

    移动构造函数通过转移资源所有权避免深拷贝,利用右值引用和std::move将源对象资源“窃取”至新对象,并置源对象指针为nullptr,从而提升性能。 移动构造函数和移动赋值优化主要解决的是对象在传递过程中不必要的复制问题,通过转移资源所有权,显著提升性能,尤其是在处理大型对象时。 移动构造函数与移…

    2025年12月19日
    000
  • C++如何在函数中传递数组指针

    在C++中,函数通过指针传递数组地址,因数组名即指向首元素的指针,可定义指针参数接收,如void printArray(int* arr, int size)实现遍历。 在C++中,函数不能直接传递整个数组,但可以通过指针来传递数组的地址。常用的方式是将数组名作为指针传入函数,因为数组名本质上就是指…

    2025年12月19日
    000
  • 如何在C++中动态分配二维数组_C++动态二维数组实现技巧

    动态分配二维数组的核心是运行时确定尺寸,提升灵活性。文章首先介绍使用指针的指针(int**)手动管理内存的方法,包括按行分配和释放,并强调错误处理与内存泄漏防范;随后提出更安全的替代方案:推荐使用std::vector实现自动内存管理,避免泄漏;还介绍了单块连续内存分配以优化性能,通过索引计算模拟二…

    2025年12月19日
    000
  • C++如何在文件I/O中实现临时文件管理

    使用tmpfile()或RAII类管理C++临时文件,确保路径唯一和自动清理:tmpfile()自动创建并删除文件;结合std::filesystem生成唯一路径,用RAII封装实现析构时自动删除,避免资源泄漏。 在C++文件I/O中管理临时文件,关键在于确保文件创建安全、路径唯一,并在使用后及时清…

    2025年12月19日
    000
  • c++如何返回局部变量的引用或指针_c++函数返回值安全与陷阱解析

    C++函数不应返回局部变量的引用或指针,因函数结束时栈帧销毁,导致悬空引用或野指针,引发未定义行为。安全策略包括:按值返回(依赖RVO/移动语义优化)、返回智能指针(unique_ptr/shared_ptr)管理动态对象所有权、使用输出参数或返回optional/variant处理异常情况。 C+…

    2025年12月19日
    000
  • c++如何获取当前系统时间_c++系统时间获取与格式化方法

    答案是使用C++标准库函数获取系统时间。通过std::time获取时间戳,再用std::localtime和std::strftime或std::put_time格式化为可读时间,也可用库获取毫秒级高精度时间,时区处理依赖系统设置或第三方库如Boost。 C++获取系统时间,简单来说,就是调用一些函…

    2025年12月19日
    000
  • c++如何进行动态内存分配_c++ new与delete内存管理技巧

    答案:C++中new和delete用于动态内存分配,解决运行时未知大小、对象生命周期延长及大内存需求等问题,但易引发内存泄漏、悬空指针等风险;现代C++推荐使用智能指针如std::unique_ptr和std::shared_ptr实现RAII,自动管理资源,提升安全性与代码简洁性。 C++进行动态…

    2025年12月19日
    000
  • c++中如何使用C++17的std::filesystem_filesystem库文件操作指南

    c++kquote>std::filesystem从C++17起提供跨平台文件操作,需包含头文件并启用C++17,支持路径处理、文件状态检查、目录遍历及文件增删改查。 从C++17开始,std::filesystem 成为标准库的一部分,提供了方便的文件和目录操作功能。它取代了传统依赖平台相关…

    2025年12月19日
    000
  • C++开发学生信息查询系统方法

    答案:C++学生信息查询系统需选用合适数据结构如vector或map管理学生对象,通过文件I/O实现数据持久化,并采用模块化设计分离数据、逻辑与界面以提升可维护性。 C++开发学生信息查询系统,核心在于利用C++的面向对象特性和强大的文件I/O能力,构建一个能够高效存储、检索、修改和展示学生信息的控…

    2025年12月19日
    000
  • C++初级银行账户管理系统实现方法

    该银行账户管理系统通过面向对象设计实现开户、存取款等功能,使用Bank类管理多个账户并提供查询服务,结合互斥锁保障多线程下余额操作的安全性。 要实现一个C++初级银行账户管理系统,核心在于如何用代码模拟银行账户的各种操作,比如开户、存款、取款、查询余额等等。它涉及面向对象编程的一些基本概念,以及如何…

    2025年12月19日
    000
  • C++内存模型与指令重排影响分析

    C++内存模型通过原子操作和内存序解决多线程下的指令重排与可见性问题,核心是使用std::atomic配合memory_order建立“发生先于”关系。首先用std::atomic保证共享变量的原子性,避免数据竞争;其次选择合适内存序:memory_order_relaxed仅保证原子性,适用于无同…

    2025年12月19日
    000
  • C++如何使用STL容器实现队列和栈

    C++中使用std::stack和std::queue适配器可高效实现栈和队列,二者默认以std::deque为底层容器,提供语义清晰、类型安全的接口,并支持替换底层容器以优化性能;在多线程环境下需通过互斥锁等机制确保线程安全。 在C++中,要实现队列(Queue)和栈(Stack)这两种基本的数据…

    2025年12月19日
    000
  • C++11如何使用std::shared_ptr实现资源共享

    答案是std::shared_ptr通过引用计数实现共享所有权,推荐使用std::make_shared创建,赋值时引用计数递增,支持自定义删除器处理特殊资源,引用计数操作线程安全但对象访问需额外同步,合理使用可有效避免内存泄漏。 在C++11中,std::shared_ptr 是一种智能指针,用于…

    2025年12月19日
    000
  • C++类型转换语法和隐式转换问题

    C++提供static_cast、dynamic_cast、const_cast和reinterpret_cast四种显式类型转换,避免C风格转换的安全隐患。static_cast用于基本类型或继承关系间的安全转换;dynamic_cast支持多态类型的运行时检查,下行转换失败返回nullptr;c…

    2025年12月19日 好文分享
    000
  • C++STL容器erase和clear操作注意事项

    正确使用erase和clear需注意迭代器失效与内存管理:erase删除元素后迭代器失效,应使用返回值更新迭代器或采用erase-remove惯用法;不同容器erase性能不同,vector中间删除慢,list较快;clear清空元素但不释放内存,可用swap或shrink_to_fit释放;指针容…

    2025年12月19日
    000

发表回复

登录后才能评论
关注微信