MySQL子查询原理是什么

01前言

子查询,通俗解释就是查询语句中嵌套着另一个查询语句。相信日常工作中接触到 %ign%ignore_a_1%re_a_1% 的同学都了解或使用过子查询,但是具体它是怎样实现的呢? 查询效率如何? 这些恐怕好多人就不太清楚了,下面咱们就围绕这两个问题共同探索一下。

02准备内容

这个任务需要使用三个表格,这三个表格都拥有一个主键索引 id 和一个索引 a,但字 b 上没有索引。存储过程 idata() 往表 t1 里插入的是 100 行数据,表 t2、t3 里插入了 1000 行数据。建表语句如下:

CREATE TABLE `t1` (    `id` INT ( 11 ) NOT NULL,    `t1_a` INT ( 11 ) DEFAULT NULL,    `t1_b` INT ( 11 ) DEFAULT NULL,PRIMARY KEY ( `id` ),KEY `idx_a` ( `t1_a` )) ENGINE = INNODB;CREATE TABLE `t2` (    `id` INT ( 11 ) NOT NULL,    `t2_a` INT ( 11 ) DEFAULT NULL,    `t2_b` INT ( 11 ) DEFAULT NULL,PRIMARY KEY ( `id` ),KEY `idx_a` ( `t2_a` )) ENGINE = INNODB;CREATE TABLE `t3` (    `id` INT ( 11 ) NOT NULL,    `t3_a` INT ( 11 ) DEFAULT NULL,    `t3_b` INT ( 11 ) DEFAULT NULL,PRIMARY KEY ( `id` ),KEY `idx_a` ( `t3_a` )) ENGINE = INNODB;-- 向t1添加100条数据-- drop procedure idata;delimiter ;;create procedure idata()begin  declare i int;  set i=1;  while(i<=100)do        insert into t1 values(i, i, i);    set i=i+1;  end while;end;;delimiter ;call idata();-- 向t2添加1000条数据drop procedure idata;delimiter ;;create procedure idata()begin  declare i int;  set i=101;  while(i<=1100)do        insert into t2 values(i, i, i);    set i=i+1;  end while;end;;delimiter ;call idata();-- 向t2添加1000条数据,且t3_a列的值为倒叙drop procedure idata;delimiter ;;create procedure idata()begin  declare i int;  set i=101;  while(i<=1100)do        insert into t3 values(i, 1101-i, i);    set i=i+1;  end while;end;;delimiter ;call idata();

03子查询的语法形式和分类

3.1 语法形式

子查询的语法规定,子查询可以在一个外层查询的各种位置出现,这里我们只介绍常用的几个:

3.1.1  FROM子句中

SELECT m, n FROM (SELECT m2 + 1 AS m, n2 AS n FROM t2 WHERE m2 > 2) AS t;

这个例子中的子查询是:(SELECT m2 + 1 AS m, n2 AS n FROM t2 WHERE m2 > 2),这个放在FROM子句中的子查询相当于一个表,但又和我们平常使用的表有点儿不一样,这种由子查询结果集组成的表称之为派生表。

3.1.2 WHERE或IN子句中

如:SELECT * FROM t1 WHERE m1 = (SELECT MIN(m2) FROM t2);

       SELECT * FROM t1 WHERE m1 IN (SELECT m2 FROM t2);

其他的还有 SELECT 子句中,ORDER BY 子句中,GROUP BY 子句中,虽然语法支持,但没啥意义,就不唠叨这些情况了。

3.2 分类

3.2.1 按返回的结果集区分

标量子查询,只返回一个单一值的子查询称之为标量子查询,比如:

SELECT * FROM t1 WHERE m1 = (SELECT m1 FROM t1 LIMIT 1);

行子查询,就是只返回一条记录的子查询,不过这条记录需要包含多个列(只包含一个列就成了标量子查询了)。比如:SELECT * FROM t1 WHERE (m1, n1) = (SELECT m2, n2 FROM t2 LIMIT 1);

列子查询,就是只返回一个列的数据,不过这个列的数据需要包含多条记录(只包含一条记录就成了标量子查询了)。比如:SELECT * FROM t1 WHERE m1 IN (SELECT m2 FROM t2);

表子查询,就是子查询的结果既包含很多条记录,又包含很多个列,比如:

SELECT * FROM t1 WHERE (m1, n1) IN (SELECT m2, n2 FROM t2);

其中的 (SELECT m2, n2 FROM t2) 就是一个表子查询,这里需要和行子查询对比一下,行子查询中我们用了 LIMIT 1 来保证子查询的结果只有一条记录。

3.2.2 按与外层查询关系来区分

不相关子查询,就是子查询可以单独运行出结果,而不依赖于外层查询的值,我们就可以把这个子查询称之为不相关子查询。
相关子查询,就是需要依赖于外层查询的值的子查询称之为相关子查询。比如:SELECT * FROM t1 WHERE m1 IN (SELECT m2 FROM t2 WHERE n1 = n2);

04子查询在MySQL中是怎么执行的

4.1 标量子查询、行子查询的执行方式

4.1.1 不相关子查询

如下边这个查询语句:

mysql root@localhost:test> explain select * from t1 where t1_a = (select t2_a from t2 limit 1);+----+-------------+-------+-------+---------------+-------+---------+--------+------+-------------+| id | select_type | table | type  | possible_keys | key   | key_len | ref    | rows | Extra       |+----+-------------+-------+-------+---------------+-------+---------+--------+------+-------------+| 1  | PRIMARY     | t1    | ref   | idx_a         | idx_a | 5       | const  | 1    | Using where || 2  | SUBQUERY    | t2    | index |         | idx_a | 5       |  | 1000 | Using index |+----+-------------+-------+-------+---------------+-------+---------+--------+------+-------------+

它的执行方式:

先单独执行 (select t2_a from t2 limit 1) 这个子查询。

然后在将上一步子查询得到的结果当作外层查询的参数再执行外层查询 select * from t1 where t1_a = …。

也就是说,对于包含不相关的标量子查询或者行子查询的查询语句来说,MySQL 会分别独立的执行外层查询和子查询,就当作两个单表查询就好了。

4.1.2 相关的子查询

比如下边这个查询:

mysql root@localhost:test> explain select * from t1 where t1_a = (select t2_a from t2 where t1.t1_b=t2.t2_b  limit 1);+----+--------------------+-------+------+---------------+--------+---------+--------+------+-------------+| id | select_type        | table | type | possible_keys | key    | key_len | ref    | rows | Extra       |+----+--------------------+-------+------+---------------+--------+---------+--------+------+-------------+| 1  | PRIMARY            | t1    | ALL  |         |  |   |  | 100  | Using where || 2  | DEPENDENT SUBQUERY | t2    | ALL  |         |  |   |  | 1000 | Using where |+----+--------------------+-------+------+---------------+--------+---------+--------+------+-------------+

它的执行方式就是这样的:

先从外层查询中获取一条记录,本例中也就是先从 t1 表中获取一条记录。

然后从上一步骤中获取的那条记录中找出子查询中涉及到的值,就是 t1 表中找出 t1.t1_b 列的值,然后执行子查询。

最后根据子查询的查询结果来检测外层查询 WHERE 子句的条件是否成立,如果成立,就把外层查询的那条记录加入到结果集,否则就丢弃。

然后重复以上步骤,直到 t1 中的记录全部匹配完。

4.2 IN子查询

4.2.1 物化

如果子查询的结果集中的记录条数很少,那么把子查询和外层查询分别看成两个单独的单表查询效率还是蛮高的,但是如果单独执行子查询后的结果集太多的话,就会导致这些问题:

结果集太多,可能内存中都放不下~

对于外层查询来说,如果子查询的结果集太多,那就意味着 IN 子句中的参数特别多,这就导致:

1)无法有效的使用索引,只能对外层查询进行全表扫描。

2)在对外层查询执行全表扫描时,由于 IN 子句中的参数太多,这会导致检测一条记录是否符合和 IN 子句中的参数匹配花费的时间太长。

因此,可以将非相关子查询的结果集写入临时表中,而不直接将其作为外层查询的参数。写入临时表的过程是这样的:

该临时表的列就是子查询结果集中的列。

写入临时表的记录会被去重,让临时表变得更小,更省地方。

一般情况下子查询结果集不大时,就会为它建立基于内存的使用 Memory 存储引擎的临时表,而且会为该表建立哈希索引。

如果子查询的结果集非常大,超过了系统变量 tmp_table_size或者 max_heap_table_size,临时表会转而使用基于磁盘的存储引擎来保存结果集中的记录,索引类型也对应转变为 B+ 树索引。

将子查询结果集中的记录保存到临时表中的过程被称为物化(Materialize)。我们可以称存储子查询结果集的临时表为物化表,以便更加便利。正因为物化表中的记录都建立了索引(基于内存的物化表有哈希索引,基于磁盘的有 B+ 树索引),通过索引执行IN语句判断某个操作数在不在子查询结果集中变得非常快,从而提升了子查询语句的性能。

mysql root@localhost:test> explain select * from t3 where t3_a in (select t2_a from t2);+----+--------------+-------------+--------+---------------+------------+---------+--------------+------+-------------+| id | select_type  | table       | type   | possible_keys | key        | key_len | ref          | rows | Extra       |+----+--------------+-------------+--------+---------------+------------+---------+--------------+------+-------------+| 1  | SIMPLE       | t3          | ALL    | idx_a         |      |   |        | 1000 | Using where || 1  | SIMPLE       |  | eq_ref |     |  | 5       | test.t3.t3_a | 1    |       || 2  | MATERIALIZED | t2          | index  | idx_a         | idx_a      | 5       |        | 1000 | Using index |+----+--------------+-------------+--------+---------------+------------+---------+--------------+------+-------------+

其实上边的查询就相当于表 t3 和子查询物化表进行内连接:

mysql root@localhost:test> explain select * from t3 left join t2 on t3.t3_a=t2.t2_a;+----+-------------+-------+------+---------------+--------+---------+--------------+------+--------+| id | select_type | table | type | possible_keys | key    | key_len | ref          | rows | Extra  |+----+-------------+-------+------+---------------+--------+---------+--------------+------+--------+| 1  | SIMPLE      | t3    | ALL  |         |  |   |        | 1000 |  || 1  | SIMPLE      | t2    | ref  | idx_a         | idx_a  | 5       | test.t3.t3_a | 1    |  |+----+-------------+-------+------+---------------+--------+---------+--------------+------+--------+

此时 MySQL 查询优化器会通过运算来选择成本更低的方案来执行查询。

虽然,上面通过物化表的方式,将IN子查询转换成了联接查询,但还是会有建立临时表的成本,能不能不进行物化操作直接把子查询转换为连接呢?直接转换肯定不行。
— 这里我们先构造了3条记录,其实也是构造不唯一的普通索引

+------+------+------+| id   | t2_a | t2_b |+------+------+------+| 1100 | 1000 | 1000 || 1101 | 1000 | 1000 || 1102 | 1000 | 1000 |+------+------+------+-- 加限制条件where t2.id>=1100是为了减少要显示的数据mysql root@localhost:test> select * from t3 where t3_a in (select t2_a from t2 where t2.id>=1100);+-----+------+------+| id  | t3_a | t3_b |+-----+------+------+| 101 | 1000 | 101  |+-----+------+------+1 row in setTime: 0.016smysql root@localhost:test> select * from t3 left join t2 on t3.t3_a=t2.t2_a where t2.id>=1100;+-----+------+------+------+------+------+| id  | t3_a | t3_b | id   | t2_a | t2_b |+-----+------+------+------+------+------+| 101 | 1000 | 101  | 1100 | 1000 | 1000 || 101 | 1000 | 101  | 1101 | 1000 | 1000 || 101 | 1000 | 101  | 1102 | 1000 | 1000 |+-----+------+------+------+------+------+3 rows in setTime: 0.018s

所以说 IN 子查询和表联接之间并不完全等价。而我们需要的是另一种叫做半联接 (semi-join) 的联接方式 :对于 t3 表的某条记录来说,我们只关心在 t2 表中是否存在与之匹配的记录,而不关心具体有多少条记录与之匹配,最终的结果集中也只保留 t3 表的记录。

注意:semi-join 只是在 MySQL 内部采用的一种执行子查询的方式,MySQL 并没有提供面向用户的 semi-join 语法。

4.2.2 半联接的实现:

Table pullout (子查询中的表上拉)

当子查询的查询列表处只有主键或者唯一索引列时,可以直接把子查询中的表上拉到外层查询的 FROM 子句中,并把子查询中的搜索条件合并到外层查询的搜索条件中,比如这个:

mysql root@localhost:test> select * from t3 where t3_a in (select t2_a from t2 where t2.id=999)+-----+------+------+| id  | t3_a | t3_b |+-----+------+------+| 102 | 999  | 102  |+-----+------+------+1 row in setTime: 0.024smysql root@localhost:test> select * from t3 join t2 on t3.t3_a=t2.t2_a where t2.id=999;+-----+------+------+-----+------+------+| id  | t3_a | t3_b | id  | t2_a | t2_b |+-----+------+------+-----+------+------+| 102 | 999  | 102  | 999 | 999  | 999  |+-----+------+------+-----+------+------+1 row in setTime: 0.028smysql root@localhost:test> explain select * from t3 where t3_a in (select t2_a from t2 where t2.id=999)+----+-------------+-------+-------+---------------+---------+---------+-------+------+--------+| id | select_type | table | type  | possible_keys | key     | key_len | ref   | rows | Extra  |+----+-------------+-------+-------+---------------+---------+---------+-------+------+--------+| 1  | SIMPLE      | t2    | const | PRIMARY,idx_a | PRIMARY | 4       | const | 1    |  || 1  | SIMPLE      | t3    | ref   | idx_a         | idx_a   | 5       | const | 1    |  |+----+-------------+-------+-------+---------------+---------+---------+-------+------+--------+

FirstMatch execution strategy (首次匹配)

FirstMatch 是一种最原始的半连接执行方式,跟相关子查询的执行方式是一样的,就是说先取一条外层查询的中的记录,然后到子查询的表中寻找符合匹配条件的记录,如果能找到一条,则将该外层查询的记录放入最终的结果集并且停止查找更多匹配的记录,如果找不到则把该外层查询的记录丢弃掉。然后再开始取下一条外层查询中的记录,重复上边这个过程。

mysql root@localhost:test> explain select * from t3 where t3_a in (select t2_a from t2 where t2.t2_a=1000)+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------+| id | select_type | table | type | possible_keys | key   | key_len | ref   | rows | Extra                       |+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------+| 1  | SIMPLE      | t3    | ref  | idx_a         | idx_a | 5       | const | 1    |                       || 1  | SIMPLE      | t2    | ref  | idx_a         | idx_a | 5       | const | 4    | Using index; FirstMatch(t3) |+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------+

DuplicateWeedout execution strategy (重复值消除)

转换为半连接查询后,t3 表中的某条记录可能在 t2 表中有多条匹配的记录,所以该条记录可能多次被添加到最后的结果集中,为了消除重复,我们可以建立一个临时表,并设置主键id,每当某条 t3 表中的记录要加入结果集时,就首先把这条记录的id值加入到这个临时表里,如果添加成功,说明之前这条 t2 表中的记录并没有加入最终的结果集,是一条需要的结果;如果添加失败,说明之前这条 s1 表中的记录已经加入过最终的结果集,直接把它丢弃。

LooseScan execution strategy (松散扫描)

这种虽然是扫描索引,但只取值相同的记录的第一条去做匹配操作的方式称之为松散扫描。

4.2.3 半联接的适用条件

当然,并不是所有包含IN子查询的查询语句都可以转换为 semi-join,只有形如这样的查询才可以被转换为 semi-join:

SELECT ... FROM outer_tables     WHERE expr IN (SELECT ... FROM inner_tables ...) AND ...-- 或者这样的形式也可以:SELECT ... FROM outer_tables     WHERE (oe1, oe2, ...) IN (SELECT ie1, ie2, ... FROM inner_tables ...) AND ...

用文字总结一下,只有符合下边这些条件的子查询才可以被转换为 semi-join:

该子查询必须是和IN语句组成的布尔表达式,并且在外层查询的 WHERE 或者 ON 子句中出现

外层查询也可以有其他的搜索条件,只不过和 IN 子查询的搜索条件必须使用AND 连接起来

该子查询必须是一个单一的查询,不能是由若干查询由 UNION 连接起来的形式

该子查询不能包含 GROUP BY 或者 HAVING 语句或者聚集函数

4.2.4 转为 EXISTS 子查询

可以将 IN 子查询转换为 EXISTS 子查询,无论该子查询是相关的还是不相关的。这里提供了一个通用的例子:可以将任何一个 IN 子查询转换为 EXISTS 子查询

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)-- 可以被转换为:EXISTS (SELECT inner_expr FROM ... WHERE subquery_where AND outer_expr=inner_expr)

当然这个过程中有一些特殊情况,比如在 outer_expr 或者 inner_expr 值为 NULL 的情况下就比较特殊。如果表达式中有任何一个操作数的值为 NULL,结果通常是 NULL。例如:

mysql root@localhost:test> SELECT NULL IN (1, 2, 3);+-------------------+| NULL IN (1, 2, 3) |+-------------------+|             |+-------------------+1 row in set

EXISTS 子查询的结果肯定是布尔型,值为 TRUE 或 FALSE。但是现实中我们大部分使用 IN 子查询的场景是把它放在 WHERE 或者 ON 子句中,而 WHERE 或者 ON 子句是不区分 NULL 和 FALSE 的,比方说:

mysql root@localhost:test> SELECT 1 FROM s1 WHERE NULL;+---+| 1 |+---+0 rows in setTime: 0.016smysql root@localhost:test> SELECT 1 FROM s1 WHERE FALSE;+---+| 1 |+---+0 rows in setTime: 0.033s

所以只要我们的IN子查询是放在 WHERE 或者 ON 子句中的,那么 IN ->  EXISTS 的转换就是没问题的。为什么需要进行转换呢?因为如果不进行转换,可能无法使用索引,例如下面的查询语句:

mysql root@localhost:test> explain select * from t3 where t3_a in (select t2_a from t2 where t2.t2_a>=999) or t3_b > 1000;+----+-------------+-------+-------+---------------+--------+---------+--------+------+--------------------------+| id | select_type | table | type  | possible_keys | key    | key_len | ref    | rows | Extra                    |+----+-------------+-------+-------+---------------+--------+---------+--------+------+--------------------------+| 1  | PRIMARY     | t3    | ALL   |         |  |   |  | 1000 | Using where              || 2  | SUBQUERY    | t2    | range | idx_a         | idx_a  | 5       |  | 107  | Using where; Using index |+----+-------------+-------+-------+---------------+--------+---------+--------+------+--------------------------+

但是将它转为 EXISTS 子查询后却可以使用到索引:

mysql root@localhost:test> explain select * from t3 where exists (select 1 from t2 where t2.t2_a>=999 and t2.t2_a=t3.t3_a) or t3_b > 1000;+----+--------------------+-------+------+---------------+--------+---------+--------------+------+--------------------------+| id | select_type        | table | type | possible_keys | key    | key_len | ref          | rows | Extra                    |+----+--------------------+-------+------+---------------+--------+---------+--------------+------+--------------------------+| 1  | PRIMARY            | t3    | ALL  |         |  |   |        | 1000 | Using where              || 2  | DEPENDENT SUBQUERY | t2    | ref  | idx_a         | idx_a  | 5       | test.t3.t3_a | 1    | Using where; Using index |+----+--------------------+-------+------+---------------+--------+---------+--------------+------+--------------------------+

需要注意的是,如果 IN 子查询不满足转换为 semi-join 的条件,又不能转换为物化表如果将其转换为物化表成本过高,那么就需要使用 EXISTS 查询。如果将其转换为物化表成本过高,那么就需要使用 EXISTS 查询。

以上就是MySQL子查询原理是什么的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/154875.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月4日 06:23:39
下一篇 2025年12月4日 06:53:18

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    000
  • 如何用 CSS Paint API 实现倾斜的斑马线间隔圆环?

    实现斑马线边框样式:探究 css paint api 本文将探究如何使用 css paint api 实现倾斜的斑马线间隔圆环。 问题: 给定一个有多个圆圈组成的斑马线图案,如何使用 css 实现倾斜的斑马线间隔圆环? 答案: 立即学习“前端免费学习笔记(深入)”; 使用 css paint api…

    2025年12月24日
    000
  • 如何使用CSS Paint API实现倾斜斑马线间隔圆环边框?

    css实现斑马线边框样式 想定制一个带有倾斜斑马线间隔圆环的边框?现在使用css paint api,定制任何样式都轻而易举。 css paint api 这是一个新的css特性,允许开发人员创建自定义形状和图案,其中包括斑马线样式。 立即学习“前端免费学习笔记(深入)”; 实现倾斜斑马线间隔圆环 …

    2025年12月24日
    100

发表回复

登录后才能评论
关注微信