将越狱问题转换为求解逻辑推理题:「滥用」推理能力让LLM实现自我越狱

北京航空航天大学、360 ai 安全实验室、新加坡国立大学和南洋理工大学的研究团队联合发布了一项关于大型语言模型(llms)安全性的重要研究成果。该研究提出了一种名为“推理增强对话”(race)的新型多轮攻击框架,能够有效突破llms的安全对齐机制。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

图片

该研究发表在arXiv上,论文标题为“Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models”,论文链接:https://www.php.cn/link/dd46d788bd5e37a54318d946d6f6d4f4,GitHub链接:https://www.php.cn/link/df68274ba68d8c0cbca8eb63b22b1187。

RACE框架的核心在于利用LLMs强大的推理能力进行攻击。传统攻击方法直接发送恶意指令,容易被模型识别。而RACE框架巧妙地将恶意意图伪装成看似无害的复杂推理任务,引导模型在不知不觉中生成有害内容。 这利用了LLMs在逻辑推理和常识推理方面的优势,使其在解决看似合理的问题过程中,实际上却完成了攻击者的目标。

图片

RACE框架的设计基于推理任务的“双面性”:任务本身无害,但设计暗藏玄机,逐步引导模型生成有害内容。框架包含两个角色:受害者模型(专注于解决推理任务)和影子模型(生成和优化查询)。 看似独立的合法推理活动,结合后却导致攻击成功。

图片

为了实现推理驱动的攻击,RACE框架采用攻击状态机(ASM)框架,将攻击过程建模为一系列状态转换,保证逻辑推理规则的同时逐步推进攻击目标。 此外,它还包含动态优化与恢复机制,包括增益引导探索、自我博弈和拒绝反馈三个模块,以提高攻击效率和稳定性。

图片图片图片

实验结果显示,RACE在多种LLMs上取得了高攻击成功率(ASR),最高达96%。即使面对领先的商业模型,其攻击成功率也显著高于现有方法。 然而,现有防御机制对RACE的缓解效果有限,这突显了推理驱动攻击的潜在威胁和对现有安全措施的挑战。

图片图片

这项研究不仅揭示了LLMs潜在的安全漏洞,也为开发更强大的安全机制提供了新的思路。 研究团队强调,其目标是推动更安全的对齐技术发展,而非鼓励恶意使用。 随着LLMs的广泛应用,其安全性问题将日益重要,RACE框架的研究成果为应对这一挑战提供了重要参考。

以上就是将越狱问题转换为求解逻辑推理题:「滥用」推理能力让LLM实现自我越狱的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/169532.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月1日 01:42:29
下一篇 2025年11月1日 01:43:35

相关推荐

  • if __name__ == ‘__main__’ 的作用是什么?

    if name == ‘__main__’: 用于判断Python文件是否作为主程序运行,确保其下的代码仅在直接执行时触发,而被导入时不执行。它保障了代码的模块化与复用性,避免导入时意外执行主逻辑、测试代码或命令行解析,防止副作用。典型用法是将主逻辑封装在main()函数中,…

    2025年12月14日
    000
  • 如何理解Python的enum模块(枚举)?

    Python的enum模块通过创建枚举类将相关常量组织为类型安全的成员,每个成员具有唯一身份、可迭代且支持名称与值访问;相比传统魔术字符串或数字常量,enum提供强类型检查、防止拼写错误、提升可读性与维护性;结合auto()可自动生成值,Flag类支持位运算组合状态;序列化时需转换为值或名称以兼容J…

    2025年12月14日
    000
  • 如何用Python解析JSON和XML文件?

    Python解析JSON和XML主要依赖内置库json和xml.etree.ElementTree,分别用于高效处理结构化数据;对于大型文件,推荐使用ijson或iterparse进行流式解析以优化内存,处理编码问题需显式指定utf-8并捕获JSONDecodeError和ParseError异常,…

    2025年12月14日 好文分享
    000
  • 如何发布一个自己的Python包到PyPI?

    答案:发布Python包需准备pyproject.toml(定义元数据和依赖)、README.md(项目说明)、LICENSE(授权条款)、__init__.py(声明包)和.gitignore(忽略无关文件),并通过build构建分发文件、twine上传至PyPI或TestPyPI测试,确保包可安…

    2025年12月14日
    000
  • 解释一下Django的MTV模式。

    Django的MTV模式通过分离模型(Model)、模板(Template)和视图(View)实现关注点分离,提升代码可维护性与开发效率。Model负责数据定义与数据库交互,Template专注用户界面展示,View处理请求并协调Model与Template。URL配置将请求路由到对应View,驱动…

    2025年12月14日
    000
  • 如何在Keras Callback中获取model.fit的参数值

    本文介绍如何在Keras自定义Callback函数中获取model.fit()方法中设置的参数值,例如batch_size、epochs和validation_split等。通过访问keras.callbacks.Callback类的self.params字典,可以轻松获取这些参数,从而实现更灵活的…

    2025年12月14日
    000
  • 如何在 Keras 回调函数中获取 model.fit API 的参数值

    在 Keras 中,model.fit() 方法是训练模型的核心函数。有时,我们需要在训练过程中访问 model.fit() 方法中设置的参数,例如 batch_size、epochs 和 validation_split 等。虽然 Keras 的回调函数提供了一定的灵活性,但直接访问这些参数似乎并…

    2025年12月14日
    000
  • 如何使用Python进行数据可视化(Matplotlib, Seaborn基础)?

    答案:Python数据可视化主要通过Matplotlib和Seaborn实现,Matplotlib提供精细控制,适合复杂定制和底层操作,Seaborn基于Matplotlib构建,封装了高级接口,擅长快速生成美观的统计图表。两者互补,常结合使用:Seaborn用于快速探索数据分布、关系和趋势,Mat…

    2025年12月14日
    000
  • Python中的日志模块(logging)如何配置和使用?

    Python的logging模块通过日志器、处理器、格式化器和过滤器实现灵活的日志管理,支持多级别、多目的地输出,相比print()具有可配置性强、格式丰富、线程安全等优势,适用于复杂项目的日志需求。 Python的 logging 模块是处理程序运行信息的核心工具,它允许你以灵活的方式记录各种事件…

    2025年12月14日
    000
  • 如何在Keras回调函数中获取model.fit参数值

    本文旨在指导读者如何在Keras自定义回调函数中访问model.fit() API的参数值,例如batch_size、epochs和validation_split等。通过继承keras.callbacks.Callback类并利用self.params字典,可以轻松获取这些参数,从而实现更精细化的…

    2025年12月14日
    000
  • 如何用Python进行网络编程(Socket)?

    Python Socket编程中TCP与UDP的核心差异在于:TCP是面向连接、可靠的协议,适用于文件传输等需数据完整性的场景;UDP无连接、速度快,适合实时音视频、游戏等对延迟敏感的应用。选择依据是对可靠性与速度的需求权衡。 使用Python进行网络编程,核心在于其内置的 socket 模块。它提…

    2025年12月14日
    000
  • 使用 Jupyter Notebook 进行探索性数据分析

    Jupyter Notebook通过单元格实现代码与Markdown结合,支持数据导入(pandas)、清洗(fillna)、探索(matplotlib/seaborn可视化)、统计分析(describe/corr)和特征工程,便于记录与分享分析过程。 Jupyter Notebook 是进行探索性…

    2025年12月14日
    000
  • 如何删除列表中的重复元素并保持顺序?

    利用集合记录已见元素,遍历列表时仅添加首次出现的项,从而实现去重并保持原有顺序。 删除列表中的重复元素并保持原有顺序,核心思路是利用一个辅助的数据结构(比如集合Set)来记录我们已经见过的元素。当遍历原始列表时,如果当前元素尚未在集合中出现,我们就将其添加到新的结果列表中,并同时更新集合;如果已经出…

    2025年12月14日
    000
  • 如何理解Python的协议(Protocol)和抽象基类(ABC)?

    答案:Python的协议(Protocol)通过结构化子类型实现接口兼容性,抽象基类(ABC)通过继承和运行时检查强制接口实现。Protocol侧重静态类型检查下的“能做什么”,ABC强调运行时的“必须做什么”与类层次结构,二者互补,分别适用于灵活集成与严格契约场景。 Python的协议(Proto…

    2025年12月14日
    000
  • 解决Django表单输入字段不显示问题:视图函数上下文传递关键

    本文深入探讨了Django表单输入字段不显示这一常见问题。核心原因在于视图函数未将表单实例正确传递至模板渲染上下文,特别是在处理GET请求时。文章将详细指导开发者如何确保表单数据被有效传递,并提供正确的代码示例,以保证表单字段能够正常渲染并接收用户输入。 理解Django表单渲染机制 django的…

    2025年12月14日
    000
  • 如何管理Python项目的依赖?

    答案:Python依赖管理核心在于隔离与精确控制,通过虚拟环境避免依赖冲突,结合pip、requirements.txt或更先进的Poetry、Rye等工具实现环境可复现;虚拟环境确保项目独立,现代工具如Poetry利用pyproject.toml和锁定文件提升依赖解析与一致性,处理复杂冲突时需版本…

    2025年12月14日
    000
  • JAX中利用vmap并行化模型集成:理解PyTree与结构化数组模式

    本教程深入探讨JAX中利用jax.vmap并行化模型集成时遇到的常见问题。核心在于理解vmap对PyTree中数组叶子的操作机制,而非直接处理Python列表。文章将详细阐述“列表结构”与“结构化数组”模式的区别,并提供使用jax.tree_map将模型参数转换为vmap友好格式的实用解决方案,从而…

    2025年12月14日
    000
  • 如何进行Python项目的日志管理?

    Python项目的日志管理,核心在于有效利用标准库 logging 模块,它提供了一套灵活且强大的机制来记录程序运行时的各种信息。通过合理配置日志级别、输出目标(文件、控制台、网络等)以及日志格式,我们不仅能追踪应用状态、诊断潜在问题,还能为后续的性能优化和安全审计提供关键数据。这绝不仅仅是打印几行…

    2025年12月14日
    000
  • 如何理解Python的描述符(Descriptor)?

    描述符通过实现__get__、__set__等方法控制属性访问,解决属性验证、计算等重复逻辑问题;数据描述符因实现__set__而优先级高于实例字典,非数据描述符则可被实例属性覆盖,这一机制支撑了property、方法绑定等核心功能;自定义如TypeValidator类可复用验证逻辑,利用__set…

    2025年12月14日
    000
  • 如何进行Python项目的性能剖析(Profiling)?

    性能剖析是通过工具定位Python代码中耗时和资源消耗大的部分。首先用cProfile进行函数级分析,找出“时间大户”,再用line_profiler深入分析热点函数的逐行执行情况。两者结合实现从宏观到微观的优化。此外,还需关注内存(memory_profiler)、I/O(手动计时、数据库分析)和…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信