Embodied Reasoner— 浙大联合阿里等机构推出的具身交互推理模型

embodied reasoner是一种由浙江大学、中国科学院软件研究所、阿里巴巴集团等机构开发的新型具身交互推理模型,旨在通过视觉搜索、推理和行动协同完成复杂任务。该模型采用模仿学习、自我探索和自我修正的三阶段训练方法,生成多样化的思考过程(如情境分析、空间推理、自我反思等),基于交互历史和空间布局进行高效规划和推理。在ai2-thor模拟器的多种任务中,embodied reasoner表现出色,显著优于现有的视觉推理模型,尤其在处理复杂的长时序任务中,能够减少重复搜索和逻辑不一致问题。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

Embodied Reasoner— 浙大联合阿里等机构推出的具身交互推理模型Embodied Reasoner的主要功能包括:

视觉搜索与目标定位:在复杂环境中搜索并定位隐藏或暴露的物体,根据任务要求找到目标。推理与规划:通过生成多样化的思考过程(如情境分析、空间推理、自我反思等),制定高效的行动策略。行动执行:根据推理结果执行相应的动作,如导航、抓取、放置等,以完成任务。自我修正与学习:通过反思和自我修正机制,避免重复搜索和逻辑不一致,提高任务成功率。复杂任务处理:擅长处理长时序、多步骤的复合任务。

Embodied Reasoner的技术原理包括:

数据引擎:通过任务模板和场景元数据自动生成任务指令和对应的“观察-思考-行动”轨迹,包含丰富的思考过程和交互图像。三阶段训练模仿学习:在合成的轨迹上进行微调,学习基本的交互技能。自我探索(拒绝采样):基于采样和评估生成的轨迹,增强模型的探索能力。自我修正(反思调整):注入异常状态和反思修正错误,提升模型的自适应能力。多模态交互:结合视觉输入(图像)和语言输出(思考和动作),实现高效的环境交互和任务完成。推理机制:基于生成长思考序列,模拟人类的推理过程,提升模型在复杂任务中的表现。

Embodied Reasoner的项目地址包括:

百川大模型 百川大模型

百川智能公司推出的一系列大型语言模型产品

百川大模型 62 查看详情 百川大模型 项目官网:https://www.php.cn/link/d3771dbda05117c970b350da0021662cGitHub仓库:https://www.php.cn/link/e455b820b9478a022f0ef44cf2f56db4HuggingFace模型库:https://www.php.cn/link/6babc4f58d8d2e929d85fc2175025c92arXiv技术论文:https://www.php.cn/link/caf5dd77448c8a7214415ff71e11c103

Embodied Reasoner的应用场景包括:

智能家居:帮助用户在家中寻找物品、操作家电。仓储物流:在仓库中自动寻找、搬运货物,优化仓储管理。医疗辅助:协助医护人员在医院或养老院中寻找和整理物品。工业自动化:在工厂中完成复杂的操作任务,如零件搬运和设备维护。教育与研究:作为教育工具帮助学生理解任务规划,或用在研究人机交互和机器人智能。

以上就是Embodied Reasoner— 浙大联合阿里等机构推出的具身交互推理模型的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/257277.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月4日 07:50:57
下一篇 2025年11月4日 07:52:01

相关推荐

  • Tkinter与Matplotlib:在独立窗口中显示实时动态图表的教程

    本文详细阐述了如何在tkinter应用程序中,通过按钮操作在一个独立的子窗口中展示实时更新的matplotlib动态图表。教程重点解决了在gui编程中常见的frame容器创建不当、子窗口类型选择(tk vs toplevel)以及matplotlib动画funcanimation对象生命周期管理等问…

    好文分享 2025年12月14日
    000
  • Pandas DataFrame中多列组合条件计数:避免常见错误与高效实践

    本教程详细讲解如何在pandas dataframe中根据多个列的组合条件进行精确计数。文章重点阐述了在使用`loc`进行多条件筛选时,通过正确使用括号来明确布尔运算符优先级的重要性,从而避免常见的“ambiguous”错误,并提供清晰的代码示例,帮助用户高效统计特定数据组合的数量。 引言:Pand…

    2025年12月14日
    000
  • 解决Django表单提交IntegrityError:处理非空字段约束

    本文旨在解决django应用中因表单提交导致integrityerror的问题,尤其是在非空字段接收到空值时。我们将深入探讨django模型字段中的`blank`和`null`属性,解释它们在表单验证和数据库存储中的作用,并提供具体代码示例,指导开发者如何正确配置模型字段以允许可选数据,从而有效避免…

    2025年12月14日
    000
  • Python与Arduino高效实时数据交互:基于串口通信的坐标传输教程

    本文旨在指导读者如何在Python与Arduino之间建立高效的实时数据传输通道,特别针对需要传输连续坐标数据(如人脸追踪)的应用场景。我们将摒弃传统的文件读写方式,转而采用更直接、低延迟的串口通信机制,详细阐述Python端的数据发送与Arduino端的数据接收及解析方法,并提供关键代码示例与最佳…

    2025年12月14日
    000
  • 使用Pandas高效生成两列数字组合的DataFrame

    本文详细介绍了如何利用pandas库高效地创建一个包含两列数字组合的dataframe。针对给定范围,通过巧妙运用列表推导式和字典构建数据,最终生成一个左列重复、右列循环的二维表格。教程提供了清晰的代码示例和输出解释,旨在帮助用户掌握pandas数据构建的专业方法。 创建具有指定范围数字组合的Dat…

    2025年12月14日
    000
  • 利用Pandas高效提取DataFrame中符合条件的关联数据

    本文将深入探讨如何在Pandas DataFrame中高效地执行向量化操作,特别是针对多列数据,根据特定条件筛选并提取关联数据(如患者ID)。通过结合布尔索引和列表推导式,我们将展示如何避免低效的循环,实现高性能的数据处理,从而轻松获取按列分组的条件性数据列表。 Pandas作为Python中强大的…

    2025年12月14日
    000
  • Polars LazyFrame多列乘法:跳过索引列的高效策略

    本文详细介绍了在polars中对两个lazyframe进行列式乘法运算的高效方法,尤其是在需要排除特定索引列时。通过利用`pl.struct`将非索引列封装成结构体、使用`join`操作对齐数据,以及直接对结构体进行乘法运算,最后通过`unnest`展开结果,实现了类似于pandas的直观操作,同时…

    2025年12月14日
    000
  • 使用数位DP高效计算指定范围内数位和小于等于X的整数数量

    本教程详细介绍了如何使用数位动态规划(Digit DP)算法,高效地统计在给定范围 [1, n] 内,其各位数字之和小于或等于 x 的整数数量。针对 n 值可达 10^12 的大规模场景,传统遍历方法效率低下,数位DP通过递归分解与记忆化搜索,将问题转化为子问题求解,显著提升了计算性能。文章通过具体…

    2025年12月14日
    000
  • Python 循环中条件中断与列表追加的顺序陷阱

    本文探讨了python循环中因操作顺序不当导致数据意外追加到列表的问题。当列表追加操作在条件判断和中断(`break`)之前执行时,即使满足中断条件,不应包含的数据也可能被添加到列表中。教程通过具体示例代码,详细分析了这种常见错误的原因,并提供了正确的代码实现,强调了在循环中合理安排操作顺序对于数据…

    2025年12月14日
    000
  • Python中print(input())的陷阱:深入理解变量为何为None

    本文探讨了Python编程中一个常见的陷阱:将`print(input())`的执行结果赋值给变量时,变量为何会意外地获得`None`值。我们将解释`input()`和`print()`函数的行为差异,揭示`print()`函数返回`None`的本质,并提供正确的用户输入获取方法,以避免`TypeE…

    2025年12月14日
    000
  • Python临时文件的高级用法:解决外部访问与持久化问题

    本文旨在解决python中操作临时文件时遇到的“文件被占用”和文件自动删除问题。当使用`tempfile.temporaryfile`进行外部操作(如复制)时,常因文件句柄被python持有而导致错误,或因文件关闭而立即删除。教程将详细介绍如何利用`tempfile.namedtemporaryfi…

    2025年12月14日
    000
  • Django REST Framework自定义用户模型实现邮箱登录认证教程

    本教程详细指导如何在django rest framework中使用自定义用户模型实现基于邮箱和密码的登录认证。文章涵盖自定义用户模型、自定义认证后端、登录序列化器和api视图的配置,并重点解析了认证后端中常见的`usermodel`引用错误及`authenticate`方法的正确返回逻辑,确保系统…

    2025年12月14日
    000
  • SQLAlchemy声明式风格下如何指定数据库表模式

    本文详细阐述了如何在sqlalchemy的声明式风格中,为数据库表指定特定的schema。通过利用模型类中的`__table_args__`属性,开发者可以设置`schema`参数,从而控制表在postgresql等支持schema的数据库中的命名空间归属。这使得表能够被创建到指定的schema而非…

    2025年12月14日
    000
  • 优化SQLite3并发访问:解决读写冲突与提升性能

    本文旨在解决sqlite3数据库在多进程并发读写场景下的性能瓶颈与数据访问冲突问题。通过深入探讨索引优化、启用wal(write-ahead log)模式、复用数据库连接和批量数据插入等核心策略,结合安全、高效的编程实践,如参数化查询和规范化异常处理,指导开发者构建更健壮、高效率的sqlite3应用…

    2025年12月14日
    000
  • 使用Python从LAION 5B等在线数据库高效获取指定类别图片教程

    本教程旨在指导开发者如何利用python,通过api调用从laion 5b等大型在线图像数据库高效获取指定类别的图片,而无需下载整个庞大的数据集。文章详细介绍了使用laion knn服务进行图像搜索和下载的步骤,包括必要的库、api请求参数配置、数据处理以及图片保存机制,为数据科学家和开发者提供了一…

    2025年12月14日
    000
  • 将行数据转换为列:Pandas pivot 方法详解

    本教程详细介绍了如何使用 pandas 的 `pivot` 方法将数据框中按行存储的页面级信息转换为按列展示的报告级汇总数据。通过指定索引、列和值参数,结合 `add_prefix`、`reset_index` 和 `rename_axis` 等辅助操作,实现数据重塑,将不同页码的值转换为独立的列,…

    2025年12月14日
    000
  • Python Pandas:高效处理多CSV文件并统计指定列唯一值

    本教程详细介绍了如何使用python pandas库高效地处理多个csv文件,并统计其中指定列(例如列’b’)的唯一值数量。文章通过实际示例演示了如何读取文件、识别并计数唯一项,最终生成一份汇总表格。此外,还探讨了如何提取每个文件中首次出现的唯一值行,为数据分析提供灵活的解决…

    2025年12月14日
    000
  • Telethon 异步编程指南:正确获取用户信息与协程处理

    在使用 telethon 库开发 telegram 客户端时,尝试获取自身信息(如 `client.get_me()`)时,常会遇到 `attributeerror: ‘coroutine’ object has no attribute ‘stringify&#…

    2025年12月14日
    000
  • IntelliJ IDEA 文件类型识别与管理指南

    JetBrains IDEs,如IntelliJ IDEA,主要通过文件名扩展名或哈希bang行来识别文件类型。本文将深入探讨IDE内部的文件类型管理机制,并提供详细的步骤,指导用户如何手动覆盖单个文件的类型,以及如何在IDE设置中配置全局文件类型映射,从而确保代码获得正确的语法高亮、智能提示和运行…

    2025年12月14日
    000
  • 使用 vgamepad 库模拟手柄按键:正确操作指南

    本文深入探讨了python `vgamepad` 库在模拟虚拟手柄按键时的一个常见问题:直接使用整数进行按键操作无效。文章阐明了 `vgamepad` 库设计上要求使用预定义的 `xusb_button` 枚举常量来确保按键模拟的正确性,并提供了详细的解释、示例代码和最佳实践,帮助开发者避免常见错误…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信