MySQL让索引更高效的方法是什么?

数据库系列更新到现在我想大家对所有的概念都已有个大概认识了,这周我在看评论的时候我发现有个网友的提问我觉得很有意思:如何设计一个索引?你们都是怎么设计索引的?怎么设计更高效?

MySQL让索引更高效的方法是什么?

前言

我们知道,索引是一个基于链表实现的树状Tree结构,能够快速的检索数据,目前几乎所RDBMS数据库都实现了索引特性,比如MySQL的B+Tree索引,MongoDB的BTree索引等。

在业务开发过程中,索引设计高效与否决定了接口对应SQL的执行效率,高效的索引可以降低接口的Response Time,同时还可以降低成本,我们要现实的目标是:索引设计->降低接口响应时间->降低服务器配置->降低成本,最终要落实到成本上来,因为老板最关心的是成本。

今天就跟大家聊聊MySQL中的索引以及如何设计索引,使用索引才能提降低接口的RT,提高用户体检。

MySQL中的索引

MySQL中的InnoDB引擎使用B+Tree结构来存储索引,可以尽量减少数据查询时磁盘IO次数,同时树的高度直接影响了查询的性能,一般树的高度维持在 3~4 层。

B+Tree由三部分组成:根root、枝branch以及Leaf叶子,其中root和branch不存储数据,只存储指针地址,数据全部存储在Leaf Node,同时Leaf Node之间用双向链表链接,结构如下:

MySQL让索引更高效的方法是什么?

从上面可以看到,每个Leaf Node是三部分组成的,即前驱指针p_prev,数据data以及后继指针p_next,同时数据data是有序的,默认是升序ASC,分布在B+tree右边的键值总是大于左边的,同时从root到每个Leaf的距离是相等的,也就是访问任何一个Leaf Node需要的IO是一样的,即索引树的高度Level + 1次IO操作。

我们可以将MySQL中的索引可以看成一张小表,占用磁盘空间,创建索引的过程其实就是按照索引列排序的过程,先在sort_buffer_size进行排序,如果排序的数据量大,sort_buffer_size容量不下,就需要通过临时文件来排序,最重要的是通过索引可以避免排序操作(distinct,group by,order by)。

聚集索引

MySQL中的表是IOT(Index Organization Table,索引组织表),数据按照主键id顺序存储(逻辑上是连续,物理上不连续),而且主键id是聚集索引(clustered index),存储着整行数据,如果没有显示的指定主键,MySQL会将所有的列组合起来构造一个row_id作为primary key,例如表users(id, user_id, user_name, phone, primary key(id)),id是聚集索引,存储了id, user_id, user_name, phone整行的数据。

辅助索引

MySQL让索引更高效的方法是什么?

辅助索引也称为二级索引,索引中除了存储索引列外,还存储了主键id,对于user_name的索引idx_user_name(user_name)而言,其实等价于idx_user_name(user_name, id),MySQL会自动在辅助索引的最后添加上主键id,熟悉Oracle数据库的都知道,索引里除了索引列还存储了row_id(代表数据的物理位置,由四部分组成:对象编号+数据文件号+数据块号+数据行号),我们在创建辅助索引也可以显示添加主键id。

-- 创建user_name列上的索引mysql> create index idx_user_name on users(user_name);-- 显示添加主键id创建索引mysql> create index idx_user_name_id on users(user_name,id);-- 对比两个索引的统计数据mysql> select a.space as tbl_spaceid, a.table_id, a.name as table_name, row_format, space_type,  b.index_id , b.name as index_name, n_fields, page_no, b.type as index_type  from information_schema.INNODB_TABLES a left join information_schema.INNODB_INDEXES b  on a.table_id =b.table_id where a.name = 'test/users';+-------------+----------+------------+------------+------------+----------+------------------+----------+------| tbl_spaceid | table_id | table_name | row_format | space_type | index_id | index_name       | n_fields | page_no | index_type |+-------------+----------+------------+------------+------------+----------+------------------+----------+------|         518 |     1586 | test/users | Dynamic    | Single     |     1254 | PRIMARY          |        9 |       4 |          3 ||         518 |     1586 | test/users | Dynamic    | Single     |     4003 | idx_user_name    |        2 |       5 |          0 ||         518 |     1586 | test/users | Dynamic    | Single     |     4004 | idx_user_name_id |        2 |      45 |          0 |mysql> select index_name, last_update, stat_name, stat_value, stat_description from mysql.innodb_index_stats where index_name in ('idx_user_name','idx_user_name_id');+------------------+---------------------+--------------+------------+-----------------------------------+| index_name       | last_update         | stat_name    | stat_value | stat_description                  |+------------------+---------------------+--------------+------------+-----------------------------------+   | idx_user_name    | 2021-01-02 17:14:48 | n_leaf_pages |       1358 | Number of leaf pages in the index || idx_user_name    | 2021-01-02 17:14:48 | size         |       1572 | Number of pages in the index      || idx_user_name_id | 2021-01-02 17:14:48 | n_leaf_pages |       1358 | Number of leaf pages in the index || idx_user_name_id | 2021-01-02 17:14:48 | size         |       1572 | Number of pages in the index      |

对比一下两个索引的结果,n_fields表示索引中的列数,n_leaf_pages表示索引中的叶子页数,size表示索引中的总页数,通过数据比对就可以看到,辅助索引中确实包含了主键id,也说明了这两个索引时完全一致。

Index_name n_fields n_leaf_pages size

idx_user_name213581572idx_user_name_id213581572

索引回表

上面证明了辅助索引包含主键id,如果通过辅助索引列去过滤数据有可能需要回表,举个例子:业务需要通过用户名user_name去查询用户表users的信息,业务接口对应的SQL:

select  user_id, user_name, phone from users where user_name = 'Laaa';

我们知道,对于索引idx_user_name而言,其实就是一个小表idx_user_name(user_name, id),如果只查询索引中的列,只需要扫描索引就能获取到所需数据,是不需要回表的,如下SQL语句:

SQL 1: select id, user_name from users where user_name = ‘Laaa’;

SQL 2: select id from users where user_name = ‘Laaa’;

mysql> explain select id, name from users where name = 'Laaa';+----+-------------+-------+------------+------+---------------+---------------+---------+-------+------+-------| id | select_type | table | partitions | type | possible_keys | key           | key_len | ref   | rows | filtered | Extra       |+----+-------------+-------+------------+------+---------------+---------------+---------+-------+------+-------|  1 | SIMPLE      | users | NULL       | ref  | idx_user_name | idx_user_name | 82      | const |    1 |   100.00 | Using index |mysql> explain select id from users where name = 'Laaa';+----+-------------+-------+------------+------+---------------+---------------+---------+-------+------+-------| id | select_type | table | partitions | type | possible_keys | key           | key_len | ref   | rows | filtered | Extra       |+----+-------------+-------+------------+------+---------------+---------------+---------+-------+------+-------|  1 | SIMPLE      | users | NULL       | ref  | idx_user_name | idx_user_name | 82      | const |    1 |   100.00 | Using index |

SQL 1和SQL 2的执行计划中的Extra=Using index 表示使用覆盖索引扫描,不需要回表,再来看上面的业务SQL:

select user_id, user_name, phone from users where user_name = ‘Laaa’;

可以看到select后面的user_id,phone列不在索引idx_user_name中,就需要通过主键id进行回表查找,MySQL内部分如下两个阶段处理:

Section 1: select **id** from users where user_name = ‘Laaa’ //id = 100101

Section 2: select user_id, user_name, phone from users where id = 100101;

将Section 2的操作称为回表,即通过辅助索引中的主键id去原表中查找数据。

索引高度

MySQL的索引时B+tree结构,即使表里有上亿条数据,索引的高度都不会很高,通常维持在3-4层左右,我来计算下索引idx_name的高度,从上面知道索引信息:index_id = 4003, page_no = 5,它的偏移量offset就是page_no x innodo_page_size + 64 = 81984,通过hexdump进行查看

$hexdump -s 81984 -n 10 /usr/local/var/mysql/test/users.ibd0014040 00 02 00 00 00 00 00 00 0f a3                  001404a

其中索引的PAGE_LEVEL为00,即idx_user_name索引高度为1,0f a3 代表索引编号,转换为十进制是4003,正是index_id。

数据扫描方式

全表扫描

从左到右依次扫描整个B+Tree获取数据,扫描整个表数据,IO开销大,速度慢,锁等严重,影响MySQL的并发。

对于OLAP的业务场景,需要扫描返回大量数据,这时候全表扫描的顺序IO效率更高。

索引扫描

通常来讲索引比表小,扫描的数据量小,消耗的IO少,执行速度块,几乎没有锁等,能够提高MySQL的并发。

对于OLTP系统,希望所有的SQL都能命中合适的索引总是美好的。

主要区别就是扫描数据量大小以及IO的操作,全表扫描是顺序IO,索引扫描是随机IO,MySQL对此做了优化,增加了change buffer特性来提高IO性能。

索引优化案例

分页查询优化

业务要根据时间范围查询交易记录,接口原始的SQL如下:

纳米搜索 纳米搜索

纳米搜索:360推出的新一代AI搜索引擎

纳米搜索 30 查看详情 纳米搜索

select  * from trade_info where status = 0 and create_time >= '2020-10-01 00:00:00' and create_time <= '2020-10-07 23:59:59' order by id desc limit 102120, 20;

表trade_info上有索引idx_status_create_time(status,create_time),通过上面分析知道,等价于索引**(status,create_time,id)**,对于典型的分页limit m, n来说,越往后翻页越慢,也就是m越大会越慢,因为要定位m位置需要扫描的数据越来越多,导致IO开销比较大,这里可以利用辅助索引的覆盖扫描来进行优化,先获取id,这一步就是索引覆盖扫描,不需要回表,然后通过id跟原表trade_info进行关联,改写后的SQL如下:

select * from trade_info a ,(select  id from trade_info where status = 0 and create_time >= '2020-10-01 00:00:00' and create_time <= '2020-10-07 23:59:59' order by id desc limit 102120, 20) as b   //这一步走的是索引覆盖扫描,不需要回表 where a.id = b.id;

很多同学只知道这样写效率高,但是未必知道为什么要这样改写,理解索引特性对编写高质量的SQL尤为重要。

分而治之总是不错的

营销系统有一批过期的优惠卷要失效,核心SQL如下:

-- 需要更新的数据量500wupdate coupons set status = 1 where status =0 and create_time >= '2020-10-01 00:00:00' and create_time <= '2020-10-07 23:59:59';

在Oracle里更新500w数据是很快,因为可以利用多个cpu core去执行,但是MySQL就需要注意了,一个SQL只能使用一个cpu core去处理,如果SQL很复杂或执行很慢,就会阻塞后面的SQL请求,造成活动连接数暴增,MySQL CPU 100%,相应的接口Timeout,同时对于主从复制架构,而且做了业务读写分离,更新500w数据需要5分钟,Master上执行了5分钟,binlog传到了slave也需要执行5分钟,那就是Slave延迟5分钟,在这期间会造成业务脏数据,比如重复下单等。

优化思路:先获取where条件中的最小id和最大id,然后分批次去更新,每个批次1000条,这样既能快速完成更新,又能保证主从复制不会出现延迟。

优化如下:

先获取要更新的数据范围内的最小id和最大id(表没有物理delete,所以id是连续的)

mysql> explain select min(id) min_id, max(id) max_id from coupons where status =0 and create_time >= '2020-10-01 00:00:00' and create_time <= '2020-10-07 23:59:59'; +----+-------------+-------+------------+-------+------------------------+------------------------+---------+---| id | select_type | table | partitions | type  | possible_keys          | key                    | key_len | ref  | rows   | filtered | Extra                    |+----+-------------+-------+------------+-------+------------------------+------------------------+---------+---|  1 | SIMPLE      | users | NULL       | range | idx_status_create_time | idx_status_create_time | 6       | NULL | 180300 |   100.00 | Using where; Using index |

Extra=Using where; Using index使用了索引idx_status_create_time,同时需要的数据都在索引中能找到,所以不需要回表查询数据。

以每次1000条commit一次进行循环update,主要代码如下:

current_id = min_id;for  current_id =current_id and id <= current_id + 1000;  //通过主键id更新1000条很快commit;current_id += 1000;done

这两个案例告诉我们,要充分利用辅助索引包含主键id的特性,先通过索引获取主键id走覆盖索引扫描,不需要回表,然后再通过id去关联操作是高效的,同时根据MySQL的特性使用分而治之的思想既能高效完成操作,又能避免主从复制延迟产生的业务数据混乱。

MySQL索引设计

熟悉了索引的特性之后,就可以在业务开发过程中设计高质量的索引,降低接口的响应时间。

前缀索引

对于使用REDUNDANT或者COMPACT格式的InnoDB表,索引键前缀长度限制为767字节。如果TEXT或VARCHAR列的列前缀索引超过191个字符,则可能会达到此限制,假定为utf8mb4字符集,每个字符最多4个字节。

可以通过设置参数innodb_large_prefix来开启或禁用索引前缀长度的限制,即是设置为OFF,索引虽然可以创建成功,也会有一个警告,主要是因为index size会很大,效率大量的IO的操作,即使MySQL优化器命中了该索引,效率也不会很高。

-- 设置innodb_large_prefix=OFF禁用索引前缀限制,虽然可以创建成功,但是有警告。mysql> create index idx_nickname on users(nickname);    // `nickname` varchar(255)Records: 0  Duplicates: 0  Warnings: 1mysql> show warnings;+---------+------+---------------------------------------------------------+| Level   | Code | Message                                                 |+---------+------+---------------------------------------------------------+| Warning | 1071 | Specified key was too long; max key length is 767 bytes |

业务发展初期,为了快速实现功能,对一些数据表字段的长度定义都比较宽松,比如用户表users的昵称nickname定义为varchar(128),而且有业务接口需要通过nickname查询,系统运行了一段时间之后,查询users表最大的nickname长度为30,这个时候就可以创建前缀索引来减小索引的长度提升性能。

-- `nickname` varchar(128) DEFAULT NULL定义的执行计划mysql> explain select * from users where nickname = 'Laaa';+----+-------------+-------+------------+------+---------------+--------------+---------+-------+------+--------| id | select_type | table | partitions | type | possible_keys | key          | key_len | ref   | rows | filtered | Extra |+----+-------------+-------+------------+------+---------------+--------------+---------+-------+------+--------|  1 | SIMPLE      | users | NULL       | ref  | idx_nickname  | idx_nickname | 515     | const |    1 |   100.00 | NULL  |

key_len=515,由于表和列都是utf8mb4字符集,每个字符占4个字节,变长数据类型+2Bytes,允许NULL额外+1Bytes,即128 x 4 + 2 + 1 = 515Bytes。创建前缀索引,前缀长度也可以不是当前表的数据列最大值,应该是区分度最高的那部分长度,一般能达到90%以上即可,例如email字段存储都是类似这样的值xxxx@yyy.com,前缀索引的最大长度可以是xxxx这部分的最大长度即可。

-- 创建前缀索引,前缀长度为30mysql> create index idx_nickname_part on users(nickname(30));-- 查看执行计划mysql> explain select * from users where nickname = 'Laaa';+----+-------------+-------+------------+------+--------------------------------+-------------------+---------+-| id | select_type | table | partitions | type | possible_keys                  | key               | key_len | ref   | rows | filtered | Extra       |+----+-------------+-------+------------+------+--------------------------------+-------------------+---------+-|  1 | SIMPLE      | users | NULL       | ref  | idx_nickname_part,idx_nickname | idx_nickname_part | 123     | const |    1 |   100.00 | Using where |

可以看到优化器选择了前缀索引,索引长度为123,即30 x 4 + 2 + 1 = 123 Bytes,大小不到原来的四分之。

前缀索引虽然可以减小索引的大小,但是不能消除排序。

mysql> explain select gender,count(*) from users where nickname like 'User100%' group by nickname limit 10;+----+-------------+-------+------------+-------+--------------------------------+--------------+---------+-----| id | select_type | table | partitions | type  | possible_keys                  | key          | key_len | ref  | rows | filtered | Extra                 |+----+-------------+-------+------------+-------+--------------------------------+--------------+---------+-----|  1 | SIMPLE      | users | NULL       | range | idx_nickname_part,idx_nickname | idx_nickname | 515     | NULL |  899 |   100.00 | Using index condition |--可以看到Extra= Using index condition表示使用了索引,但是需要回表查询数据,没有发生排序操作。mysql> explain select gender,count(*) from users where nickname like  'User100%' group by nickname limit 10;+----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------| id | select_type | table | partitions | type  | possible_keys     | key               | key_len | ref  | rows | filtered | Extra                        |+----+-------------+-------+------------+-------+-------------------+-------------------+---------+------+------|  1 | SIMPLE      | users | NULL       | range | idx_nickname_part | idx_nickname_part | 123     | NULL |  899 |   100.00 | Using where; Using temporary |--可以看到Extra= Using where; Using temporaryn表示在使用了索引的情况下,需要回表去查询所需的数据,同时发生了排序操作。

复合索引

在单列索引不能很好的过滤数据的时候,可以结合where条件中其他字段来创建复合索引,更好的去过滤数据,减少IO的扫描次数,举个例子:业务需要按照时间段来查询交易记录,有如下的SQL:

select  * from trade_info where status = 1 and create_time >= '2020-10-01 00:00:00' and create_time <= '2020-10-07 23:59:59';

开发同学根据以往复合索引的设计的经验:唯一值多选择性好的列作为复合索引的前导列,所以创建复合索idx_create_time_status是高效的,因为create_time是一秒一个值,唯一值很多,选择性很好,而status只有离散的6个值,所以认为这样创建是没问题的,但是这个经验只适合于等值条件过滤,不适合有范围条件过滤的情况,例如idx_user_id_status(user_id,status)这个是没问题的,但是对于包含有create_time范围的复合索引来说,就不适应了,我们来看下这两种不同索引顺序的差异,即idx_status_create_time和idx_create_time_status。

-- 分别创建两种不同的复合索引mysql> create index idx_status_create_time on trade_info(status, create_time);mysql> create index idx_create_time_status on trade_info(create_time,status);-- 查看SQL的执行计划mysql> explain select * from users where status = 1 and create_time >='2021-10-01 00:00:00' and create_time <= '2021-10-07 23:59:59';+----+-------------+-------+------------+-------+-----------------------------------------------+---------------| id | select_type | table | partitions | type  | possible_keys                                 | key                    | key_len | ref  | rows  | filtered | Extra                 |+----+-------------+-------+------------+-------+-----------------------------------------------+---------------|  1 | SIMPLE      | trade_info | NULL       | range | idx_status_create_time,idx_create_time_status | idx_status_create_time | 6       | NULL | 98518 |   100.00 | Using index condition |

从执行计划可以看到,两种不同顺序的复合索引都存在的情况,MySQL优化器选择的是idx_status_create_time索引,那为什么不选择idx_create_time_status,我们通过optimizer_trace来跟踪优化器的选择。

-- 开启optimizer_trace跟踪mysql> set session optimizer_trace="enabled=on",end_markers_in_json=on;-- 执行SQL语句mysql> select * from trade_info where status = 1 and create_time >='2021-10-01 00:00:00' and create_time SELECT trace FROM information_schema.OPTIMIZER_TRACEG;

MySQL让索引更高效的方法是什么?

对比下两个索引的统计数据,如下所示:

复合索引 Type Rows 参与过滤索引列 Chosen Cause

idx_status_create_timeIndex Range Scan98518status AND create_timeTrueCost低idx_create_time_statusIndex Range Scan98518create_timeFalseCost高

MySQL优化器是基于Cost的,COST主要包括IO_COST和CPU_COST,MySQL的CBO(Cost-Based Optimizer基于成本的优化器)总是选择Cost最小的作为最终的执行计划去执行,从上面的分析,CBO选择的是复合索引idx_status_create_time,因为该索引中的status和create_time都能参与了数据过滤,成本较低;而idx_create_time_status只有create_time参数数据过滤,status被忽略了,其实CBO将其简化为单列索引idx_create_time,选择性没有复合索引idx_status_create_time好。

复合索引设计原则

将范围查询的列放在复合索引的最后面,例如idx_status_create_time。

列过滤的频繁越高,选择性越好,应该作为复合索引的前导列,适用于等值查找,例如idx_user_id_status。

这两个原则不是矛盾的,而是相辅相成的。

跳跃索引

一般情况下,如果表users有复合索引idx_status_create_time,我们都知道,单独用create_time去查询,MySQL优化器是不走索引,所以还需要再创建一个单列索引idx_create_time。用过Oracle的同学都知道,是可以走索引跳跃扫描(Index Skip Scan),在MySQL 8.0也实现Oracle类似的索引跳跃扫描,在优化器选项也可以看到skip_scan=on。

| optimizer_switch             |use_invisible_indexes=off,skip_scan=on,hash_join=on |

适合复合索引前导列唯一值少,后导列唯一值多的情况,如果前导列唯一值变多了,则MySQL CBO不会选择索引跳跃扫描,取决于索引列的数据分表情况。

mysql> explain select id, user_id,status, phone from users where create_time >='2021-01-02 23:01:00' and create_time <= '2021-01-03 23:01:00';+----+-------------+-------+------------+------+---------------+------+---------+------+--------+----------+----| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |+----+-------------+-------+------------+------+---------------+------+---------+------+--------+----------+----|  1 | SIMPLE      | users | NULL       | range  | idx_status_create_time          | idx_status_create_time | NULL    | NULL | 15636 |    11.11 | Using where; Using index for skip scan|

也可以通过optimizer_switch=’skip_scan=off’来关闭索引跳跃扫描特性。

总结

本位为大家介绍了MySQL中的索引,包括聚集索引和辅助索引,辅助索引包含了主键id用于回表操作,同时利用覆盖索引扫描可以更好的优化SQL。

同时也介绍了如何更好做MySQL索引设计,包括前缀索引,复合索引的顺序问题以及MySQL 8.0推出的索引跳跃扫描,我们都知道,索引可以加快数据的检索,减少IO开销,会占用磁盘空间,是一种用空间换时间的优化手段,同时更新操作会导致索引频繁的合并分裂,影响索引性能,在实际的业务开发中,如何根据业务场景去设计合适的索引是非常重要的,今天就聊这么多,希望对大家有所帮助。

相关推荐:《mysql教程》

以上就是MySQL让索引更高效的方法是什么?的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/289700.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月4日 20:03:20
下一篇 2025年11月4日 20:07:20

相关推荐

  • 网络进化!

    Web 应用程序从静态网站到动态网页的演变是由对更具交互性、用户友好性和功能丰富的 Web 体验的需求推动的。以下是这种范式转变的概述: 1. 静态网站(1990 年代) 定义:静态网站由用 HTML 编写的固定内容组成。每个页面都是预先构建并存储在服务器上,并且向每个用户传递相同的内容。技术:HT…

    2025年12月24日
    000
  • 为什么多年的经验让我选择全栈而不是平均栈

    在全栈和平均栈开发方面工作了 6 年多,我可以告诉您,虽然这两种方法都是流行且有效的方法,但它们满足不同的需求,并且有自己的优点和缺点。这两个堆栈都可以帮助您创建 Web 应用程序,但它们的实现方式却截然不同。如果您在两者之间难以选择,我希望我在两者之间的经验能给您一些有用的见解。 在这篇文章中,我…

    2025年12月24日
    000
  • CSS如何实现任意角度的扇形(代码示例)

    本篇文章给大家带来的内容是关于CSS如何实现任意角度的扇形(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。 扇形制作原理,底部一个纯色原形,里面2个相同颜色的半圆,可以是白色,内部半圆按一定角度变化,就可以产生出扇形效果 扇形绘制 .shanxing{ position:…

    2025年12月24日
    000
  • html中怎么运行sql语句_html中运行sql语句方法【教程】

    必须通过后端服务执行SQL操作。一、PHP与MySQL交互:使用PHP脚本在服务器端连接数据库,执行查询并嵌入HTML输出,避免硬编码凭证。二、Ajax调用API:前端通过JavaScript向后端API发送请求,服务端执行SQL并返回JSON数据,前端动态渲染结果。三、SQLite与JavaScr…

    2025年12月23日
    000
  • html手机怎么运行_手机运行html方法【教程】

    1、使用手机浏览器可直接打开本地HTML文件,只需通过文件管理器点击文件并选择浏览器打开即可预览;2、借助Spck Editor等专用编辑器应用能实现实时编辑与预览,适合开发调试;3、对于含JavaScript或需服务器支持的动态内容,应安装KSWEB类应用搭建本地服务器,再通过http://loc…

    2025年12月23日
    000
  • html如何连接_连接HTML与数据库或API接口【接口】

    HTML无法直接连接数据库或调用API,需借助JavaScript fetch、PHP中转、Node.js后端或Python Flask等服务端技术实现动态数据交互。 如果您希望在网页中动态获取数据,HTML本身无法直接连接数据库或调用API接口,必须借助服务器端语言或JavaScript等客户端技…

    2025年12月23日
    000
  • HTML如何添加批注功能_评论系统实现方案【教程】

    可实现HTML文本批注功能的四种方案:一、基于HTML5自定义属性与JS的静态批注;二、遵循W3C标准的语义化批注;三、嵌入Utterances或Giscus等第三方评论系统;四、自建AJAX评论后端+前端组件。 如果您希望在HTML页面中为特定文本添加可交互的批注功能,或构建一个轻量级的评论系统,…

    2025年12月23日
    000
  • html怎么在本地服务器运行_本地服务器运html方法【指南】

    使用本地服务器运行HTML文件需通过HTTP协议,可选Python命令启动服务、Node.js的http-server、VS Code的Live Server插件或XAMPP等工具,确保AJAX等功能正常。 要在本地服务器运行HTML文件,不能直接双击打开,因为部分功能(如AJAX、API调用)需要…

    2025年12月23日
    200
  • phpstudy怎么运行本地html_phpstudy运行本地html方法【教程】

    确保Apache或Nginx服务已启动;2. 将HTML文件放入WWW目录;3. 浏览器访问localhost即可运行页面。 在使用 PHPStudy 时,运行本地 HTML 文件非常简单。PHPStudy 是一个集成了 Apache/Nginx、PHP 和 MySQL 的集成环境工具,主要用于本地…

    2025年12月23日
    000
  • HTML页面如何生成短链接_URL压缩转换方法【攻略】

    可借助第三方服务、API调用、Nginx反向代理、PHP脚本或GitHub Pages五种方式将HTML页面URL转为短链接:1.用bit.ly等平台手动缩短;2.调用Bitly API批量生成;3.配置Nginx rewrite规则重定向;4.部署PHP+MySQL实现动态跳转;5.利用GitHu…

    2025年12月23日
    000
  • Java JDBC中SQL INSERT语句的常见语法错误及修复指南

    本文旨在解决java jdbc应用中常见的sql `insert`语句语法错误,特别是因缺少括号而导致的错误。我们将深入分析错误信息,指出问题根源,并提供正确的sql语句范例及java jdbc `preparedstatement`的使用方法。文章还将涵盖jdbc数据库操作的最佳实践、错误处理和调…

    2025年12月23日
    000
  • wampserver怎么运行html程序_wampserver运行html程序方法【教程】

    使用WampServer运行HTML程序需将文件放入www目录,启动Apache服务后通过http://localhost/项目路径访问,确保在本地服务器环境下正确解析运行。 如果您在本地开发网页,但无法正确查看HTML文件的运行效果,可能是由于未通过本地服务器环境进行访问。WampServer 提…

    2025年12月23日
    000
  • 平板怎么运行html代码_平板运行html代码步骤【指南】

    可在平板上通过四种方式查看HTML效果:一、用浏览器直接打开本地.html文件;二、使用JSFiddle等在线编辑器实时预览;三、安装Acode等编程应用离线编写并预览;四、通过KSWEB搭建本地服务器运行含动态内容的页面。 如果您希望在平板设备上查看或测试HTML代码的效果,但不确定如何操作,则可…

    2025年12月23日
    000
  • html上怎么运行php代码吗_html中运行php代码方法【教程】

    要使PHP代码在HTML中执行,必须通过支持PHP的服务器环境。首先将文件保存为.php格式并部署到配置好PHP模块的服务器(如Apache)根目录,通过http://localhost访问;或修改服务器配置(如.htaccess)令.html文件解析PHP;推荐使用.php文件混合HTML与PHP…

    2025年12月23日
    000
  • html怎么用sublime运行php_sublime运行html中php方法【教程】

    可在Sublime Text中通过配置PHP环境变量并创建Build System运行PHP代码,或使用PHP内置服务器、XAMPP等集成环境结合浏览器预览实现解析与调试。 如果您在使用Sublime Text编辑HTML或PHP文件时,希望直接运行PHP代码并查看输出结果,但发现无法像在浏览器中那…

    2025年12月23日
    000
  • PHP表单提交后防止页面刷新并保留数据与错误提示的教程

    本教程旨在解决php表单提交时页面刷新、用户输入数据丢失以及错误提示显示不佳的问题。核心方法是利用服务器端php的`$_post`变量,在表单提交并进行服务器端验证失败后,不进行页面重定向,而是直接在当前页面重新渲染表单,同时回填用户之前输入的数据并显示验证错误信息,从而显著提升用户体验。 引言:优…

    2025年12月23日
    000
  • 如何通过JavaScript/jQuery获取HTML元素内容并与PHP后端交互

    本教程详细阐述了如何利用JavaScript和jQuery从HTML页面中动态获取特定` `标签的文本内容,并进一步探讨了如何将这些前端捕获的数据通过AJAX技术安全地传递给PHP后端进行处理,例如执行SQL查询。文章涵盖了从前端事件触发、数据捕获到后端数据接收、处理及安全防护的全流程,旨在提供一个…

    2025年12月23日
    000
  • php怎么在html5中运行_php在html5中运行方法【教程】

    PHP在服务器端运行,通过嵌入HTML5文件生成动态内容。1. PHP与HTML5协同工作:PHP代码嵌入.html或.php文件,由服务器解析后输出纯HTML至浏览器。2. 创建index.php文件,使用标准HTML5结构,在其中插入等PHP代码,实现动态内容展示。3. 搭建本地环境可选用XAM…

    2025年12月23日 好文分享
    000
  • epp4怎么运行html文件_EPP4运行html文件步骤【指南】

    首先确认EPP4已安装并启动Apache服务,将HTML文件放入www目录后,通过http://localhost/路径访问即可预览页面,确保文件位置与路径正确。 打开EPP4后运行HTML文件并不复杂,只需正确操作即可在浏览器中预览页面效果。EPP4(Easy PHP Pack 4)是一个集成开发…

    2025年12月23日
    000
  • html怎么用浏览器运行php_浏览器运html中php文件方法【教程】

    正确答案是搭建本地开发环境。需安装XAMPP等集成工具,将.php文件放入htdocs目录,通过http://localhost访问,确保服务器解析PHP并返回HTML给浏览器显示。 PHP 是服务器端语言,不能直接通过浏览器像 HTML 那样双击打开运行。你看到的“在浏览器中运行 PHP”其实是指…

    2025年12月23日
    000

发表回复

登录后才能评论
关注微信