Coding-Party 基于飞桨的农作物智能识别系统

基于深度学习的病虫害检测方法不仅具有重要的学术研究价值,而且具有非常广阔的市场应用前景。其次轻量化模型的构建需要成为未来研究考虑的重要组成部分,使得农作物病害智能识别可以

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

coding-party 基于飞桨的农作物智能识别系统 - 创想鸟

项目背景

lian合国粮食及农业组织最近的一份报告表明,每年农业生产的自然损失中有三分之一以上是由农业病虫害造成的。需要考虑的农业病虫害众多,依赖于实验室观察和实验的传统方法很容易导致错误的诊断。为加快转变农业发展方式,农业部组织开展农作物病虫害专业化统防统治与绿色防控融合推进,逐步实现农作物病虫害全程绿色防控的规模化实施、规范化作业。融合推进可以有效提升病虫害防治的组织化程度和科学化水平,是实现病虫综合治理、农药减量控害的重要内容,也是转变农业发展方式、实现提质增效的重大举措。在保障防治效果的同时,农产品质量符合食品安全国家标准,生态环境及生物多样性有所改善。

Coding-Party 基于飞桨的农作物智能识别系统 - 创想鸟        

项目目的

农作物只要是出现病虫害问题,不仅仅会给人们的生活和环境产生非常严重的影响,也会给农民的收入造成不利的影响。 在广大农村地区大部分农民都会首选传统农药方式来进行病虫害防治:

对于病虫害防治意识比较差;

应用传统农药防治不符合实际情况,如药量不合理、周期不合理等。不但没有有效的防治,而且给农作物造成比较大的伤害,同时也出现严重的环境污染的问题。最终就造成了农作物病害防治的效果极差,使得农作物无法正常的生长。到了最后人工防治难度增大、成本提升,后果严重。

讯飞听见会议 讯飞听见会议

科大讯飞推出的AI智能会议系统

讯飞听见会议 19 查看详情 讯飞听见会议

为加快转变农业发展方式,农业部组织开展农作物病虫专业化统防统治与绿色防控融合推进,逐步实现农作物病虫害全程绿色防控的规模化实施、规范化作业。融合推进可以有效提升病虫害防治的组织化程度和科学化水平,是实现病虫综合治理、农药减量控害的重要内容,也是转变农业发展方式、实现提质增效的重大举措。在保障防治效果的同时,农产品质量符合食品安全国家标准,生态环境及生物多样性有所改善。 应用深度学习对农作物进行准确的病害识别并推荐合适的防治措施,创造出能为农作物看病的“植物医生”,一定程度上起到综合防治的效果和标准,以更好地消除农作物病害,促进农作物健康的生长,保证农作物的产量。

技术路线图

Coding-Party 基于飞桨的农作物智能识别系统 - 创想鸟        

系统架构图

Coding-Party 基于飞桨的农作物智能识别系统 - 创想鸟        

项目创新点

本作品将基于AI Challenger农作物叶子图像数据集包含10种植物的27种病害,合计61个分类(按“物种-病害-程度”分)的特性同时结合实地采集的数据,主要从以下几个方面考虑改进:

①增加一定的农作物种类与细分粒度 绝大多数能识别出来的病虫害,等能识别出来的时候已经太晚了。比如草莓白粉病,发病初期症状极为不明显(非常薄的白色绒毛状斑点),只有大量白色粉末状真菌长满叶片(或者果实)的时候才能很明显的看到。②优选模型,注重预测精度,增加考虑因素 存在一部分病虫害在发生危害之前根别看不见病/虫原,如植物根部的线虫,藏于叶子后的蚜虫等情况,将监控不局限于图像的分析识别。③追溯预测其患病因素 针对目前世面上的系统只做了简单的识别功能,缺少对病虫害产生原因的分析,本项目将完善与改进这一方向

数据集

本研究基于AI Challenger农作物叶子图像数据集包含10种植物(苹果、樱桃、葡萄、柑桔、桃、草莓、番茄、辣椒、玉米、马铃薯)的27种病害(其中24个病害有分一般和严重两种程度),合计61个分类(按“物种-病害-程度”分)的特性,训练图像总数为31718张,测试图像总数为4540张。每张图包含一片农作物的叶子,叶子占据图片主要位置。Coding-Party 基于飞桨的农作物智能识别系统 - 创想鸟        

网络模型

ResNet通过改变学习目标,即不再学习完整的输出F(x),而是学习残差H(x)−x,解决了传统卷积层或全连接层在进行信息传递时存在的丢失、损耗等问题。通过直接将信息从输入绕道传输到输出,一定程度上保护了信息的完整性。同时,由于学习的目标是残差,简化了学习的难度。

Coding-Party 基于飞桨的农作物智能识别系统 - 创想鸟        

解压数据集

In [ ]

#!unzip /home/aistudio/data/data101323/data.zip

   

数据预处理

In [ ]

import paddleimport paddle.nn.functional as Fimport numpy as npimport cv2import jsonimport mathimport randomimport osfrom paddle.io import Dataset  # 导入Datasrt库filename = "AgriculturalDisease_trainingset/AgriculturalDisease_train_annotations.json"f_open = open(filename)fileJson = json.load(f_open)train_data = []for i in range(len(fileJson)):    img1=cv2.imread("AgriculturalDisease_trainingset/images/"+fileJson[i]['image_id'])    img2=cv2.resize(img1, (128,128), interpolation=cv2.INTER_AREA)/255    r=[]    g=[]    b=[]    r.append(img2[:, :, 0])    g.append(img2[:, :, 1])    b.append(img2[:, :, 2])    one_data = np.concatenate((r,g,b),axis=0)    one_data = paddle.to_tensor(one_data,dtype="float32")    train_data.append([one_data,fileJson[i]['disease_class']])filename = "AgriculturalDisease_validationset/AgriculturalDisease_validation_annotations.json"f_open = open(filename)fileJson1 = json.load(f_open)test_data = []for i in range(len(fileJson1)):    img1=cv2.imread("AgriculturalDisease_validationset/images/"+fileJson1[i]['image_id'])    img2=cv2.resize(img1, (128,128), interpolation=cv2.INTER_AREA)/255    r=[]    g=[]    b=[]    r.append(img2[:, :, 0])    g.append(img2[:, :, 1])    b.append(img2[:, :, 2])    one_data = np.concatenate((r,g,b),axis=0)    one_data = paddle.to_tensor(one_data,dtype="float32")    test_data.append([one_data,fileJson1[i]['disease_class']])

       

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations  def convert_to_list(value, n, name, dtype=np.int):

       

数据读取

In [ ]

from paddle.static import InputSpecimport paddle.nn.functional as Fprint("-------end readData--------")class MyDataset(Dataset):    """    步骤一:继承paddle.io.Dataset类    """    def __init__(self, mode='train'):        """        步骤二:实现构造函数,定义数据读取方式,划分训练和测试数据集        """        super(MyDataset, self).__init__()        if mode == 'train':            self.data = train_data        else:            self.data = test_data    def __getitem__(self, index):        """        步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)        """        data = self.data[index][0]        label = self.data[index][1]        return data, label    def __len__(self):        """        步骤四:实现__len__方法,返回数据集总数目        """        return len(self.data)# s_tra_data,s_tra_label = split_data(train_data,train_label,batch_size=32)# s_tes_data,s_tes_label = split_data(test_data,test_label,batch_size=32)#数据读取train_loader = paddle.io.DataLoader(MyDataset("train"), batch_size=16, shuffle=True)test_loader = paddle.io.DataLoader(MyDataset("test"), batch_size=16, shuffle=True)

       

-------end readData--------

       

定义训练过程

In [ ]

epoch_num = 20 #训练轮数batch_size = 16 learning_rate = 0.0001 #学习率val_acc_history = []val_loss_history = []def train(model):    print('start training ... ')    # turn into training mode    model.train()    opt = paddle.optimizer.Adam(learning_rate=learning_rate,                                parameters=model.parameters())    for epoch in range(epoch_num):        acc_train = []        for batch_id, data in enumerate(train_loader()):            x_data = data[0]            y_data = paddle.to_tensor(data[1],dtype="int64")            y_data = paddle.unsqueeze(y_data, 1)            logits = model(x_data)            loss = F.cross_entropy(logits, y_data)            acc = paddle.metric.accuracy(logits, y_data)            acc_train.append(acc.numpy())            if batch_id % 200 == 0 and batch_id != 0:                print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, loss.numpy()))                avg_acc = np.mean(acc_train)                print("[train] accuracy: {}".format(avg_acc))            loss.backward()            opt.step()            opt.clear_grad()                # evaluate model after one epoch        model.eval()        accuracies = []        losses = []        for batch_id, data in enumerate(test_loader()):            x_data = data[0]            y_data = paddle.to_tensor(data[1],dtype="int64")            y_data = paddle.unsqueeze(y_data, 1)            logits = model(x_data)            loss = F.cross_entropy(logits, y_data)            acc = paddle.metric.accuracy(logits, y_data)            accuracies.append(acc.numpy())            losses.append(loss.numpy())        avg_acc, avg_loss = np.mean(accuracies), np.mean(losses)        print("[test] accuracy/loss: {}/{}".format(avg_acc, avg_loss))        val_acc_history.append(avg_acc)        val_loss_history.append(avg_loss)        model.train()

   

开始训练

In [4]

model = paddle.vision.models.resnet152(pretrained=True,num_classes=61)train(model)  path = "save_model"paddle.jit.save(model, path,input_spec=[InputSpec(shape=[16,3,128,128], dtype='float32')])

   

作品前端实现

前端功能结构图

Coding-Party 基于飞桨的农作物智能识别系统 - 创想鸟        

系统主界面

Coding-Party 基于飞桨的农作物智能识别系统 - 创想鸟        

病虫查询界面

Coding-Party 基于飞桨的农作物智能识别系统 - 创想鸟        

病害识别结果

Coding-Party 基于飞桨的农作物智能识别系统 - 创想鸟        

常见病害查询

Coding-Party 基于飞桨的农作物智能识别系统 - 创想鸟        

以上就是Coding-Party 基于飞桨的农作物智能识别系统的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/315701.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月5日 07:33:43
下一篇 2025年11月5日 07:37:32

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 移动端 CSS 中如何实现标签边框包裹垂直居中效果?

    移动端 css 中还原标签边框包裹垂直居中的设计难题 设计稿中常见的边框包裹文字,文字垂直左右居中的效果,在移动端实现时往往会遇到意想不到的难题,尤其是在安卓和苹果系统下的显示不一致问题。如何解决这一问题,还原设计稿中的视觉效果? 解决方案 flex 布局 立即学习“前端免费学习笔记(深入)”; f…

    2025年12月24日
    200
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200

发表回复

登录后才能评论
关注微信