聚焦制造业智能化转型中国科学技术大学依托昇腾突破知识增强大模型关键技术

在全球工业革命的浪潮下,传统制造业正加速迈向智能化与数字化转型,其核心在于将复杂且高度专业化的数据与机器学习技术深度融合,打造面向实际应用的高效智能系统。在中国科学技术大学鲲鹏昇腾科教创新卓越中心提供的强大算力支持下,宋骐教授团队依托昇腾平台,成功研发出一套领域知识构建框架以及面向大模型的增强推理架构。

本项目围绕三个关键方向展开深入研究,并取得多项突破性成果。首先,在工业知识图谱构建方面,针对工业数据普遍存在的特征复杂、多模态异构等挑战,研究团队提出了一种融合领域小模型与大语言模型的知识增强命名实体识别方法,显著提升了知识图谱中实体抽取的准确性与泛化性能。其中,昇腾平台的分布式训练加速库MindSpeed发挥了关键作用——该工具支持多维并行策略,兼容主流开源框架,能够灵活应对多模态数据的异构特性。团队采用“小模型初筛+大模型精炼”的协同机制:先由小模型完成高精度初步识别,输出高质量候选结果,再交由大语言模型进行深度语义理解与实体确认。整个流程涵盖“初始识别—知识抽取—知识引导反思”三个阶段,形成闭环优化,大幅提升了知识获取的鲁棒性与适应性。

在智能运维系统开发方面,针对工业设备运维中存在的高人力成本、数据分析能力薄弱及故障预测精度不足等问题,团队设计并实现了基于多模态知识图谱的智能运维技术路径。系统采用ETL(Extract-Transform-Load)架构,对设备运行过程中产生的文本、日志、传感器信号等多种模态数据进行统一采集、清洗与存储。随后,基于资源描述框架RDF语义网技术构建面向工业场景的知识图谱,清晰刻画设备、状态与故障之间的关联关系。通过引入注意力机制的特征融合模型,并结合Node2Vec与DeepWalk图嵌入算法,将多源信息融合为可全面表征设备健康状态的综合向量。此外,团队还开发了故障智能预测与诊断模块,利用异常数据特征与知识图谱中历史故障案例进行相似性比对,实现故障类型识别、严重等级评估及维修策略推荐,最终达成从监测到决策的全流程智能化运维。

同时,为应对当前领域知识与大规模预训练语言模型(PLM)融合过程中存在的计算开销大、灵活性不足以及噪声干扰严重等问题,团队充分利用昇腾平台强大的计算资源调度能力,创新提出了一种知识增强与过滤一体化框架。在知识增强阶段,通过挖掘PLM嵌入空间中的冗余维度,有效降低模型计算负担;在噪声过滤阶段,设计专用的知识增强过滤器,将知识注入网络与掩码训练机制相结合,精准剔除无关或干扰性知识,显著提升知识融合的质量。该方案在大幅减少资源消耗的同时,增强了知识引入的可控性与适应性。

天工大模型 天工大模型

中国首个对标ChatGPT的双千亿级大语言模型

天工大模型 115 查看详情 天工大模型

该项研究成果成功构建了基于昇腾平台的工业知识增强大模型技术体系,不仅显著提升了工业设备智能运维的效率与可靠性,也实现了核心技术的自主可控与适配优化。通过融合前沿AI技术打造智能化系统,为建设安全、高效、智慧的现代工业体系提供了坚实的技术支撑。未来,中国科学技术大学鲲鹏昇腾科教创新卓越中心将继续依托昇腾平台深化科研探索,推动相关成果在更广泛工业场景中的应用落地,助力科技创新与实体经济深度融合。

聚焦制造业智能化转型中国科学技术大学依托昇腾突破知识增强大模型关键技术

以上就是聚焦制造业智能化转型中国科学技术大学依托昇腾突破知识增强大模型关键技术的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/369913.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月6日 07:13:40
下一篇 2025年11月6日 07:14:51

相关推荐

  • Python 模式匹配:为何不匹配时不抛出异常?

    Python 的 match 语句提供了一种强大的结构化模式匹配机制。然而,当没有模式匹配成功时,match 语句并不会像某些其他语言那样抛出异常,而是静默地继续执行。本文将深入探讨 Python 模式匹配的这一特性,解释其背后的设计理念,并提供在需要时显式处理不匹配情况的方法。理解这一行为对于编写…

    好文分享 2025年12月14日
    000
  • Pydantic v2 模型中实现条件性必填字段

    本文介绍了如何在 Pydantic v2 模型中实现条件性必填字段,以应对 API 接口返回字段可选,但创建对象时部分字段必须的要求。通过自定义模型验证器,可以在模型验证阶段检查是否满足特定条件,从而实现字段的条件性必填。 利用 model_validator 实现条件性必填 在 Pydantic …

    2025年12月14日
    000
  • Pydantic v2 模型中实现条件必需字段

    本文介绍了如何在 Pydantic v2 模型中实现条件必需字段。通过自定义验证器,可以灵活地控制模型字段的必需性,从而满足不同场景下的数据验证需求。本文提供了一个示例,展示了如何确保模型至少包含一个非空字段。 在实际应用中,我们经常需要根据不同的场景对 Pydantic 模型的字段进行不同的验证。…

    2025年12月14日
    000
  • 使用 Pydantic v2 实现条件性必填字段

    本文介绍了如何在 Pydantic v2 模型中实现条件性必填字段。通过自定义验证器,可以根据模型中其他字段的值来动态地控制某些字段是否为必填项,从而满足 API 交互中数据验证的复杂需求。本文提供了一个具体的示例,展示了如何确保模型中至少有一个字段被赋值。 在 Pydantic v2 中,虽然没有…

    2025年12月14日
    000
  • Pydantic v2 模型中实现条件必填字段

    本文介绍了在 Pydantic v2 模型中实现条件必填字段的方法。通过自定义模型验证器,可以在模型初始化后检查字段是否满足特定条件,从而灵活地控制字段的必填性,以适应不同的应用场景,例如 API 数据解析和对象创建。 在使用 Pydantic 构建数据模型时,经常会遇到这样的需求:某些字段在特定条…

    2025年12月14日
    000
  • 使用 Bash 函数在 Python 脚本运行前自动执行 Black 代码格式化

    本文旨在提供一种便捷的方式,实现在执行 Python 脚本前自动运行 Black 代码格式化工具,从而确保代码风格的一致性。 使用 Bash 函数实现自动 Black 格式化 为了在运行 Python 脚本之前自动执行 Black,我们可以创建一个 Bash 函数。这个函数首先使用 Black 格式…

    2025年12月14日
    000
  • 每次运行 Python 脚本前自动执行 Black 代码格式化

    本文介绍如何配置一个简单的 Bash 函数,实现在每次运行 Python 脚本之前自动使用 Black 进行代码格式化。通过这种方式,可以确保代码在执行前符合统一的风格规范,从而减少潜在的语法错误和提高代码可读性。该方法简单易用,适用于快速本地测试和开发环境。 在日常 Python 开发中,保持代码…

    2025年12月14日
    000
  • Python 多进程:AsyncResult 与回调函数获取结果的比较与选择

    本文深入探讨了 Python 多进程中 multiprocessing.Pool 的 apply_async() 方法,对比了使用 AsyncResult 对象和回调函数两种方式获取异步执行结果的优劣。重点分析了在处理大量任务、结果顺序要求以及异常处理等不同场景下的适用性,并提供了相应的代码示例和注…

    2025年12月14日
    000
  • Python多进程:AsyncResult与回调函数获取结果的比较与选择

    本文深入探讨了Python多进程中multiprocessing.Pool的apply_async()方法获取结果的两种主要方式:使用AsyncResult对象和使用回调函数。通过对比它们的优缺点,以及处理异常情况的方法,帮助开发者选择最适合自己应用场景的方式,提升多进程编程的效率和可靠性。 在使用…

    2025年12月14日
    000
  • 使用 Black 自动格式化 Python 代码并运行

    在日常 Python 开发中,代码风格一致性至关重要。手动格式化代码既耗时又容易出错。Black 是一款流行的 Python 代码自动格式化工具,能够帮助开发者保持代码风格的统一。本文将介绍如何配置一个 Bash 函数,在每次运行 Python 脚本之前自动使用 Black 进行格式化,从而简化开发…

    2025年12月14日
    000
  • 利用 Altair 和 Jupyter Chart 实现滑块控制坐标轴分箱

    本文将介绍如何使用 Altair 和 Jupyter Chart 实现滑块控制坐标轴分箱的功能。 正如摘要中所述,Altair 5.1+ 版本引入的 JupyterChart 功能为我们提供了强大的交互能力。通过结合 ipywidgets 和 link 函数,我们可以轻松地将滑块控件与图表的参数绑定…

    2025年12月14日
    000
  • Python中调用API并正确处理响应:以Mouser API为例

    本教程详细介绍了如何在Python中正确调用外部API,特别是针对Mouser API的请求方法和数据结构问题。通过修正API版本、请求类型和请求体,确保API请求成功并能有效解析响应数据,提升API集成效率。 在现代软件开发中,与第三方api进行交互是常见的需求。python的requests库是…

    2025年12月14日
    000
  • Python 多进程:AsyncResult 与回调函数,哪种方式更优?

    本文深入探讨了 Python 多进程 multiprocessing.Pool 中 apply_async() 方法的两种结果获取方式:AsyncResult.get() 和回调函数。分析了它们在处理大量任务时的优缺点,包括结果顺序、异常处理、内存占用等方面,并提供了相应的代码示例和注意事项,帮助开…

    2025年12月14日
    000
  • 使用 Bash 函数在执行 Python 脚本前自动运行 Black

    该教程将详细介绍如何创建一个 Bash 函数,该函数可以在执行 Python 脚本之前自动运行 Black 代码格式化工具。通过这种方式,开发者可以确保代码风格的一致性,并减少因代码格式问题导致的运行时错误。 在日常 Python 开发中,保持代码风格一致性至关重要。虽然有很多工具可以帮助我们实现这…

    2025年12月14日
    000
  • 并行计算中AsyncResult与回调函数的选择:性能与异常处理

    本文深入探讨了Python多进程库multiprocessing.Pool中apply_async()方法的使用,对比了通过AsyncResult对象获取结果和使用回调函数处理结果两种方式的优劣。重点分析了在大规模任务提交场景下的内存占用、结果顺序以及异常处理等方面的差异,并提供了相应的代码示例和注…

    2025年12月14日
    000
  • 利用 Altair 和 Jupyter Notebook 实现交互式坐标轴控制

    本文将探讨如何在 Jupyter Notebook 中,利用 Altair 和 ipywidgets 实现更高级的交互式数据可视化,即通过滑块控件动态控制 Altair 图表的坐标轴参数。Altair 5.1 版本引入的 JupyterChart 功能为我们提供了实现这一目标的可能性。 使用 Jup…

    2025年12月14日
    000
  • 如何准确查看Spark Core版本:解决PySpark版本混淆问题

    本文旨在解决在PySpark环境中难以准确获取底层Spark Core版本的问题。针对pyspark.__version__等常见方法无法反映真实Spark Core版本的情况,文章详细介绍了两种可靠的查询方法:利用Spark SQL的version()函数(适用于Spark 3.0及更高版本)以及…

    2025年12月14日
    000
  • 获取Spark Core版本:分布式环境下精准识别与验证

    在分布式Spark环境中,PySpark客户端版本与实际运行的Spark Core版本可能存在差异。本文旨在提供可靠的方法,帮助用户准确识别集群上部署的Spark Core版本,而非仅限于客户端的PySpark版本信息。核心策略是利用Spark SQL的version()函数或PySpark 3.5…

    2025年12月14日
    000
  • 如何准确获取Spark Core集群版本

    本文旨在解决在Spark环境中,尤其是当PySpark客户端版本与集群上部署的Spark Core版本不一致时,如何准确获取Spark Core实际运行版本的问题。通过介绍传统方法可能存在的局限性,并重点阐述利用Spark SQL的version()函数以及PySpark中对应的pyspark.sq…

    2025年12月14日
    000
  • Python函数中传递包含特殊字符(如点号)的关键字参数

    Python函数在接受关键字参数时,要求参数名必须是合法的Python标识符,这意味着不能直接使用包含点号等特殊字符的名称。本文将详细介绍如何通过字典解包(**kwargs)的方式,优雅地将带有特殊字符的字符串作为参数键传递给函数,并结合示例代码展示其用法,确保参数传递的灵活性和代码的健壮性。 理解…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信