基于PaddlePaddle复现的CycleMLP

本文提出了一个简单的 MLP-like 的架构 CycleMLP,它是视觉识别和密集预测的通用主干,不同于现代 MLP 架构,例如 MLP-Mixer、ResMLP 和 gMLP,其架构与图像大小相关,因此是在目标检测和分割中不可行。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于paddlepaddle复现的cyclemlp - 创想鸟

1. 简介

这是一个PaddlePaddle实现的CycleMLP。

本文提出了一个简单的 MLP-like 的架构 CycleMLP,它是视觉识别和密集预测的通用主干,不同于现代 MLP 架构,例如 MLP-Mixer、ResMLP 和 gMLP,其架构与图像大小相关,因此是在目标检测和分割中不可行。

基于PaddlePaddle复现的CycleMLP - 创想鸟

论文: CycleMLP: A MLP-like Architecture for Dense Prediction

参考repo: CycleMLP

在此非常感谢ShoufaChen贡献的CycleMLP,提高了本repo复现论文的效率。

2. 数据集和复现精度

数据集为ImageNet,训练集包含1281167张图像,验证集包含50000张图像。

│imagenet/├──train/│  ├── n01440764│  │   ├── n01440764_10026.JPEG│  │   ├── n01440764_10027.JPEG│  │   ├── ......│  ├── ......├──val/│  ├── n01440764│  │   ├── ILSVRC2012_val_00000293.JPEG│  │   ├── ILSVRC2012_val_00002138.JPEG│  │   ├── ......│  ├── ......

您可以从ImageNet 官网申请下载数据。

模型 top1 acc (参考精度) top1 acc (复现精度) 权重 | 训练日志

CycleMLP-B10.7890.790checkpoint-best.pd | train.log

权重及训练日志下载地址:百度网盘

3. 准备数据与环境

3.1 准备环境

硬件和框架版本等环境的要求如下:

硬件:4 * RTX3090框架:PaddlePaddle >= 2.2.0安装paddlepaddle

# 需要安装2.2及以上版本的Paddle,如果# 安装GPU版本的Paddlepip install paddlepaddle-gpu==2.2.0# 安装CPU版本的Paddlepip install paddlepaddle==2.2.0

更多安装方法可以参考:Paddle安装指南。

下载代码In [ ]

%cd /home/aistudio!git clone https://github.com/flytocc/CycleMLP-paddle.git

安装requirementsIn [ ]

%cd /home/aistudio/CycleMLP-paddle!pip install -r requirements.txt

3.2 准备数据

如果您已经ImageNet1k数据集,那么该步骤可以跳过,如果您没有,则可以从ImageNet官网申请下载。

4. 复现思路

4.1 使用paddle api实现模型结构

CycleFC模块

与现代方法相比,CycleMLP 有两个优势。

(1) 可以应对各种图像尺寸。

(2) 利用局部窗口实现对图像大小的线性计算复杂度。

基于PaddlePaddle复现的CycleMLP - 创想鸟

class CycleFC(nn.Layer):    def __init__(        self,        in_channels: int,        out_channels: int,        kernel_size,  # re-defined kernel_size, represent the spatial area of staircase FC        stride: int = 1,        padding: int = 0,        dilation: int = 1,        groups: int = 1,        bias: bool = True,    ):        super(CycleFC, self).__init__()        if in_channels % groups != 0:            raise ValueError('in_channels must be divisible by groups')        if out_channels % groups != 0:            raise ValueError('out_channels must be divisible by groups')        if stride != 1:            raise ValueError('stride must be 1')        if padding != 0:            raise ValueError('padding must be 0')        self.in_channels = in_channels        self.out_channels = out_channels        self.kernel_size = kernel_size        self.stride = to_2tuple(stride)        self.padding = to_2tuple(padding)        self.dilation = to_2tuple(dilation)        self.groups = groups        self.deformable_groups = self.in_channels        self.weight = self.create_parameter(            shape=[out_channels, in_channels // groups, 1, 1])  # kernel size == 1        if bias:            self.bias = self.create_parameter(shape=[out_channels])        else:            self.bias = None        self.register_buffer('offset', self.gen_offset())    def gen_offset(self):        """        offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width,            out_height, out_width]): offsets to be applied for each position in the            convolution kernel.        """        offset = paddle.empty([1, self.in_channels * 2, 1, 1])        start_idx = (self.kernel_size[0] * self.kernel_size[1]) // 2        assert self.kernel_size[0] == 1 or self.kernel_size[1] == 1, self.kernel_size        for i in range(self.in_channels):            if self.kernel_size[0] == 1:                offset[0, 2 * i + 0, 0, 0] = 0                offset[0, 2 * i + 1, 0, 0] = (i + start_idx) % self.kernel_size[1] - (self.kernel_size[1] // 2)            else:                offset[0, 2 * i + 0, 0, 0] = (i + start_idx) % self.kernel_size[0] - (self.kernel_size[0] // 2)                offset[0, 2 * i + 1, 0, 0] = 0        return offset    def forward(self, input):        """        Args:            input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor        """        B, C, H, W = input.shape        return deform_conv2d(input, self.offset.expand([B, -1, H, W]), self.weight, bias=self.bias, stride=self.stride,                             padding=self.padding, dilation=self.dilation, deformable_groups=self.deformable_groups)

构建CycleMLP模块

class CycleMLP(nn.Layer):    def __init__(self,                 dim,                 qkv_bias=False,                 qk_scale=None,                 attn_drop=0.,                 proj_drop=0.):        super().__init__()        self.mlp_c = nn.Linear(dim, dim, bias_attr=qkv_bias)        self.sfc_h = CycleFC(dim, dim, (1, 3), 1, 0)        self.sfc_w = CycleFC(dim, dim, (3, 1), 1, 0)        self.reweight = Mlp(dim, dim // 4, dim * 3)        self.proj = nn.Linear(dim, dim)        self.proj_drop = nn.Dropout(proj_drop)    def forward(self, x):        B, H, W, C = x.shape        h = self.sfc_h(x.transpose([0, 3, 1, 2])).transpose([0, 2, 3, 1])        w = self.sfc_w(x.transpose([0, 3, 1, 2])).transpose([0, 2, 3, 1])        c = self.mlp_c(x)        a = (h + w + c).transpose([0, 3, 1, 2]).flatten(2).mean(2)        a = self.reweight(a).reshape([B, C, 3]).transpose([2, 0, 1])        a = F.softmax(a, axis=0).unsqueeze(2).unsqueeze(2)        x = h * a[0] + w * a[1] + c * a[2]        x = self.proj(x)        x = self.proj_drop(x)        return x

5.2 确定训练超参

参考论文及official code,主要超参如下:

total batxh size learning rate epochs

10241e-3300

5. 开始使用

5.1 模型预测

基于PaddlePaddle复现的CycleMLP - 创想鸟

In [ ]

%cd /home/aistudio/CycleMLP-paddle%run infer.py     --model=CycleMLP_B1     --infer_imgs=/home/aistudio/CycleMLP-paddle/demo/ILSVRC2012_val_00020010.JPEG     --resume=/home/aistudio/CycleMLP_B1.pdparams

最终输出结果为

[{'class_ids': [178, 211, 209, 210, 246], 'scores': [0.9213957190513611, 0.006610415875911713, 0.0018257270567119122, 0.0013606979046016932, 0.001132593140937388], 'file_name': '/home/aistudio/CycleMLP-paddle/demo/ILSVRC2012_val_00020010.JPEG', 'label_names': ['Weimaraner', 'vizsla, Hungarian pointer', 'Chesapeake Bay retriever', 'German short-haired pointer', 'Great Dane']}]

表示预测的类别为Weimaraner(魏玛猎狗),ID是178,置信度为0.9213957190513611。

5.2 模型训练

单机多卡训练

export CUDA_VISIBLE_DEVICES=0,1,2,3python -m paddle.distributed.launch --gpus="0,1,2,3"     main.py     --model=CycleMLP_B1     --batch_size=256     --data_path=/path/to/imagenet/     --output_dir=./output/     --dist_eval

部分训练日志如下所示。

基于PaddlePaddle复现的CycleMLP - 创想鸟

[16:56:29.233819] Epoch: [261]  [ 920/1251]  eta: 0:05:50  lr: 0.000052  loss: 3.4592 (3.3812)  time: 1.0303  data: 0.0012[16:56:49.578909] Epoch: [261]  [ 940/1251]  eta: 0:05:29  lr: 0.000052  loss: 3.7399 (3.3853)  time: 1.0171  data: 0.0015

5.3 模型评估

export CUDA_VISIBLE_DEVICES=0,1,2,3python -m paddle.distributed.launch --gpus="0,1,2,3"     eval.py     --model=CycleMLP_B1     --batch_size=256     --data_path=/path/to/imagenet/     --dist_eval     --resume=$TRAINED_MODEL

5.4 模型导出

python export_model.py     --model=CycleMLP_B1     --output_dir=./output/     --resume=$TRAINED_MODEL

6. 代码结构

├── cycle_mlp.py├── demo├── engine.py├── eval.py├── export_model.py├── infer.py├── main.py├── README.md├── requirements.txt├── test_tipc└── util

7. 自动化测试脚本

详细日志在test_tipc/output

TIPC: test_tipc/README.md

首先安装auto_log,需要进行安装,安装方式如下: auto_log的详细介绍参考https://github.com/LDOUBLEV/AutoLog。

git clone https://github.com/LDOUBLEV/AutoLogcd AutoLog/pip3 install -r requirements.txtpython3 setup.py bdist_wheelpip3 install ./dist/auto_log-1.2.0-py3-none-any.whl

进行TIPC:

bash test_tipc/prepare.sh test_tipc/config/CycleMLP/CycleMLP_B1.txt 'lite_train_lite_infer'bash test_tipc/test_train_inference_python.sh test_tipc/config/CycleMLP/CycleMLP_B1.txt 'lite_train_lite_infer'

TIPC结果:

如果运行成功,在终端中会显示下面的内容,具体的日志也会输出到test_tipc/output/文件夹中的文件中。

Run successfully with command - python3.7 eval.py --model=CycleMLP_B1 --data_path=./dataset/ILSVRC2012/ --cls_label_path=./dataset/ILSVRC2012/val_list.txt --resume=./test_tipc/output/norm_train_gpus_0_autocast_null/CycleMLP_B1/checkpoint-latest.pd !Run successfully with command - python3.7 export_model.py --model=CycleMLP_B1 --resume=./test_tipc/output/norm_train_gpus_0_autocast_null/CycleMLP_B1/checkpoint-latest.pd --output=./test_tipc/output/norm_train_gpus_0_autocast_null !Run successfully with command - python3.7 inference.py --use_gpu=True --use_tensorrt=False --precision=fp32 --model_file=./test_tipc/output/norm_train_gpus_0_autocast_null/model.pdmodel --batch_size=2 --input_file=./dataset/ILSVRC2012/val  --params_file=./test_tipc/output/norm_train_gpus_0_autocast_null/model.pdiparams > ./test_tipc/output/python_infer_gpu_usetrt_False_precision_fp32_batchsize_2.log 2>&1 !...

更多详细内容,请参考:TIPC测试文档。

以上就是基于PaddlePaddle复现的CycleMLP的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/39316.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月6日 01:49:35
下一篇 2025年11月6日 01:50:01

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 为什么自定义样式表在 Safari 中访问百度时无效?

    自定义样式表在 Safari 中无效的问题 你在 Safari 偏好设置中自定义的样式表无法在某些网站(例如百度)上生效,这是为什么呢? 原因在于,你创建的样式表应用于本地文件路径,而百度是一个远程网站,位于互联网上。 在访问本地项目时,文件协议(file://)会允许你访问本地计算机上的文件。所以…

    2025年12月24日
    300
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 为什么自定义样式表在 Safari 中访问百度页面时无法生效?

    自定义样式表在 safari 中失效的原因 用户尝试在 safari 偏好设置中添加自定义样式表,代码如下: body { background-image: url(“/users/luxury/desktop/wallhaven-o5762l.png”) !important;} 测试后发现,在…

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200

发表回复

登录后才能评论
关注微信