轻量级人像分割模型:SINet 和 ExtremeC3Net

本文介绍SINet和ExtremeC3Net两个轻量级人像分割模型,二者参数分别为0.087M、0.038M,Flop为0.064G、0.128G。可通过PaddleHub快速调用,也能基于PaddleInference推理部署,并给出了Paddle2.0上的实现代码。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

轻量级人像分割模型:sinet 和 extremec3net - 创想鸟

引入

随着算力和算法的不断提升,能够训练的模型也越来越大了,当然精度也越来越高了不过过于巨大的模型也带来了部署上的不便今天就介绍两个轻量级的人像分割模型:SINet 和 ExtremeC3Net

项目说明

项目模型转换至开源项目ext_portrait_segmentation感谢上述项目提供的开源代码和模型

模型规格

具体的模型规格如下表:

model Param Flop

SINet0.087 M0.064 GExtremeC30.038 M0.128 G可以看出这两个模型算是相当轻量的了

效果展示

ExtremeC3Net:

轻量级人像分割模型:SINet 和 ExtremeC3Net - 创想鸟        

SINet:

轻量级人像分割模型:SINet 和 ExtremeC3Net - 创想鸟        

快速使用

按照惯例已经将两个模型封装为PaddleHub Module可通过PaddleHub进行快速调用In [1]

!pip install paddlehub==2.0.0b2

   In [9]

# 导入PaddleHubimport paddlehub as hub# 加载模型# 模型可选:SINet_Portrait_Segmentation 和 ExtremeC3_Portrait_Segmentationmodel = hub.Module(directory='SINet_Portrait_Segmentation')# 人像分割outputs = model.Segmentation(images=None,                       paths=['00001.jpg'],                       batch_size=1,                       output_dir='output',                       visualization=True)# 结果显示%matplotlib inlineimport cv2import numpy as npimport matplotlib.pyplot as pltimg = np.concatenate([    cv2.imread('00001.jpg'),    cv2.cvtColor(outputs[0]['mask'], cv2.COLOR_GRAY2BGR),    outputs[0]['result']], 1)plt.axis('off')plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))plt.show()

       

               In [3]

# 导入PaddleHubimport paddlehub as hub# 加载模型# 模型可选:SINet_Portrait_Segmentation 和 ExtremeC3_Portrait_Segmentationmodel = hub.Module(directory='ExtremeC3_Portrait_Segmentation')# 人像分割outputs = model.Segmentation(images=None,                       paths=['00001.jpg'],                       batch_size=1,                       output_dir='output',                       visualization=True)# 结果显示%matplotlib inlineimport cv2import numpy as npimport matplotlib.pyplot as pltimg = np.concatenate([    cv2.imread('00001.jpg'),    cv2.cvtColor(outputs[0]['mask'], cv2.COLOR_GRAY2BGR),    outputs[0]['result']], 1)plt.axis('off')plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))plt.show()

       

               

推理部署

除了使用PaddleHub一键调用之外,当然也可以使用推理模型进行推理部署接下来简单介绍一下如何基于PaddleInference完成推理部署更多详情可以参考我的另一个项目:PaddleQuickInferenceIn [4]

# 安装PaddleQuickInference!pip install ppqi -i https://pypi.python.org/simple

   In [5]

from ppqi import InferenceModelfrom SINet.processor import preprocess, postprocess# 参数配置configs = {    'img_path': '00001.jpg',    'save_dir': 'save_img',    'model_name': 'SINet_Portrait_Segmentation',    'use_gpu': False,    'use_mkldnn': False}# 第一步:数据预处理input_data = preprocess(configs['img_path'])# 第二步:加载模型model = InferenceModel(    modelpath='SINet/'+configs['model_name'],     use_gpu=configs['use_gpu'],     use_mkldnn=configs['use_mkldnn'])model.eval()# 第三步:模型推理output = model(input_data)# 第四步:结果后处理postprocess(    output,     configs['save_dir'],    configs['img_path'],    configs['model_name'])

   In [6]

from ppqi import InferenceModelfrom ExtremeC3Net.processor import preprocess, postprocess# 参数配置configs = {    'img_path': '00001.jpg',    'save_dir': 'save_img',    'model_name': 'ExtremeC3_Portrait_Segmentation',    'use_gpu': False,    'use_mkldnn': False}# 第一步:数据预处理input_data = preprocess(configs['img_path'])# 第二步:加载模型model = InferenceModel(    modelpath='ExtremeC3Net/'+configs['model_name'],     use_gpu=configs['use_gpu'],     use_mkldnn=configs['use_mkldnn'])model.eval()# 第三步:模型推理output = model(input_data)# 第四步:结果后处理postprocess(    output,     configs['save_dir'],    configs['img_path'],    configs['model_name'])

   

模型实现

接下来再介绍一下如何在Paddle2.0上实现这两个模型吧代码上与原项目的Pytorch代码是相似的针对框架之间的差异将其中的一些算子做了替换具体详情请参考下方代码In [7]

# model/sinet.py'''ExtPortraitSegCopyright (c) 2019-present NAVER Corp.MIT license'''import paddleimport paddle.nn as nnBN_moment = 0.1def channel_shuffle(x, groups):    batchsize, num_channels, height, width = x.shape    channels_per_group = num_channels // groups    # reshape    x = x.reshape([batchsize, groups,               channels_per_group, height, width])    # transpose    x = paddle.transpose(x, [0, 2, 1, 3, 4])        # flatten    x = x.reshape([batchsize, groups*channels_per_group, height, width])    return xclass CBR(nn.Layer):    '''    This class defines the convolution layer with batch normalization and PReLU activation    '''    def __init__(self, nIn, nOut, kSize, stride=1):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param kSize: kernel size        :param stride: stride rate for down-sampling. Default is 1        '''        super().__init__()        padding = int((kSize - 1) / 2)        self.conv = nn.Conv2D(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias_attr=False)        self.bn = nn.BatchNorm2D(nOut, epsilon=1e-03, momentum=BN_moment)        self.act = nn.PReLU(nOut)    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        output = self.conv(input)        output = self.bn(output)        output = self.act(output)        return outputclass separableCBR(nn.Layer):    '''    This class defines the convolution layer with batch normalization and PReLU activation    '''    def __init__(self, nIn, nOut, kSize, stride=1):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param kSize: kernel size        :param stride: stride rate for down-sampling. Default is 1        '''        super().__init__()        padding = int((kSize - 1) / 2)        self.conv = nn.Sequential(            nn.Conv2D(nIn, nIn, (kSize, kSize), stride=stride, padding=(padding, padding), groups=nIn, bias_attr=False),            nn.Conv2D(nIn, nOut,  kernel_size=1, stride=1, bias_attr=False),        )        self.bn = nn.BatchNorm2D(nOut, epsilon=1e-03, momentum= BN_moment)        self.act = nn.PReLU(nOut)    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        output = self.conv(input)        output = self.bn(output)        output = self.act(output)        return outputclass SqueezeBlock(nn.Layer):    def __init__(self, exp_size, divide=4.0):        super(SqueezeBlock, self).__init__()        if divide > 1:            self.dense = nn.Sequential(                nn.Linear(exp_size, int(exp_size / divide)),                nn.PReLU(int(exp_size / divide)),                nn.Linear(int(exp_size / divide), exp_size),                nn.PReLU(exp_size),            )        else:            self.dense = nn.Sequential(                nn.Linear(exp_size, exp_size),                nn.PReLU(exp_size)            )    def forward(self, x):        batch, channels, height, width = x.shape        out = paddle.nn.functional.avg_pool2d(x, kernel_size=[height, width]).reshape([batch, channels])                out = self.dense(out)        out = out.reshape([batch, channels, 1, 1])        return paddle.multiply(out, x)class SEseparableCBR(nn.Layer):    '''    This class defines the convolution layer with batch normalization and PReLU activation    '''    def __init__(self, nIn, nOut, kSize, stride=1, divide=2.0):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param kSize: kernel size        :param stride: stride rate for down-sampling. Default is 1        '''        super().__init__()        padding = int((kSize - 1) / 2)        self.conv = nn.Sequential(            nn.Conv2D(nIn, nIn, (kSize, kSize), stride=stride, padding=(padding, padding), groups=nIn, bias_attr=False),            SqueezeBlock(nIn, divide=divide),            nn.Conv2D(nIn, nOut,  kernel_size=1, stride=1, bias_attr=False),        )        self.bn = nn.BatchNorm2D(nOut, epsilon=1e-03, momentum= BN_moment)        self.act = nn.PReLU(nOut)    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        output = self.conv(input)        output = self.bn(output)        output = self.act(output)        return outputclass BR(nn.Layer):    '''        This class groups the batch normalization and PReLU activation    '''    def __init__(self, nOut):        '''        :param nOut: output feature maps        '''        super().__init__()        self.bn = nn.BatchNorm2D(nOut, epsilon=1e-03, momentum= BN_moment)        self.act = nn.PReLU(nOut)    def forward(self, input):        '''        :param input: input feature map        :return: normalized and thresholded feature map        '''        output = self.bn(input)        output = self.act(output)        return outputclass CB(nn.Layer):    '''       This class groups the convolution and batch normalization    '''    def __init__(self, nIn, nOut, kSize, stride=1):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param kSize: kernel size        :param stride: optinal stide for down-sampling        '''        super().__init__()        padding = int((kSize - 1) / 2)        self.conv = nn.Conv2D(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias_attr=False)        self.bn = nn.BatchNorm2D(nOut, epsilon=1e-03, momentum= BN_moment)    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        output = self.conv(input)        output = self.bn(output)        return outputclass C(nn.Layer):    '''    This class is for a convolutional layer.    '''    def __init__(self, nIn, nOut, kSize, stride=1,group=1):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param kSize: kernel size        :param stride: optional stride rate for down-sampling        '''        super().__init__()        padding = int((kSize - 1) / 2)        self.conv = nn.Conv2D(nIn, nOut, (kSize, kSize), stride=stride,                              padding=(padding, padding), bias_attr=False, groups=group)    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        output = self.conv(input)        return outputclass S2block(nn.Layer):    '''    This class defines the dilated convolution.    '''    def __init__(self, nIn, nOut, config):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param kSize: kernel size        :param stride: optional stride rate for down-sampling        :param d: optional dilation rate        '''        super().__init__()        kSize = config[0]        avgsize = config[1]        self.resolution_down = False        if avgsize >1:            self.resolution_down = True            self.down_res = nn.AvgPool2D(avgsize, avgsize)            self.up_res = nn.Upsample(mode='bilinear', align_corners=True, align_mode=0, scale_factor=avgsize)            self.avgsize = avgsize        padding = int((kSize - 1) / 2 )        self.conv = nn.Sequential(                        nn.Conv2D(nIn, nIn, kernel_size=(kSize, kSize), stride=1,                                  padding=(padding, padding), groups=nIn, bias_attr=False),                        nn.BatchNorm2D(nIn, epsilon=1e-03, momentum=BN_moment))        self.act_conv1x1 = nn.Sequential(            nn.PReLU(nIn),            nn.Conv2D(nIn, nOut, kernel_size=1, stride=1, bias_attr=False),        )        self.bn = nn.BatchNorm2D(nOut, epsilon=1e-03, momentum=BN_moment)    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        if self.resolution_down:            input = self.down_res(input)        output = self.conv(input)        output = self.act_conv1x1(output)        if self.resolution_down:            output = self.up_res(output)        return self.bn(output)class S2module(nn.Layer):    '''    This class defines the ESP block, which is based on the following principle        Reduce ---> Split ---> Transform --> Merge    '''    def __init__(self, nIn, nOut, add=True, config= [[3,1],[5,1]]):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param add: if true, add a residual connection through identity operation. You can use projection too as                in ResNet paper, but we avoid to use it if the dimensions are not the same because we do not want to                increase the module complexity        '''        super().__init__()        group_n = len(config)        n = int(nOut / group_n)        n1 = nOut - group_n * n        self.c1 = C(nIn, n, 1, 1, group=group_n)        for i in range(group_n):            var_name = 'd{}'.format(i + 1)            if i == 0:                self.__dict__["_sub_layers"][var_name] = S2block(n, n + n1, config[i])            else:                self.__dict__["_sub_layers"][var_name] = S2block(n, n,  config[i])        self.BR = BR(nOut)        self.add = add        self.group_n = group_n    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        # reduce        output1 = self.c1(input)        output1= channel_shuffle(output1, self.group_n)        for i in range(self.group_n):            var_name = 'd{}'.format(i + 1)            result_d = self.__dict__["_sub_layers"][var_name](output1)            if i == 0:                combine = result_d            else:                combine = paddle.concat([combine, result_d], 1)        # if residual version        if self.add:            combine = paddle.add(input, combine)        output = self.BR(combine)        return outputclass InputProjectionA(nn.Layer):    '''    This class projects the input image to the same spatial dimensions as the feature map.    For example, if the input image is 512 x512 x3 and spatial dimensions of feature map size are 56x56xF, then    this class will generate an output of 56x56x3    '''    def __init__(self, samplingTimes):        '''        :param samplingTimes: The rate at which you want to down-sample the image        '''        super().__init__()        self.pool = nn.LayerList()        for i in range(0, samplingTimes):            self.pool.append(nn.AvgPool2D(2, stride=2))    def forward(self, input):        '''        :param input: Input RGB Image        :return: down-sampled image (pyramid-based approach)        '''        for pool in self.pool:            input = pool(input)        return inputclass SINet_Encoder(nn.Layer):    def __init__(self, config,classes=20, p=5, q=3,  chnn=1.0):        '''        :param classes: number of classes in the dataset. Default is 20 for the cityscapes        :param p: depth multiplier        :param q: depth multiplier        '''        super().__init__()        dim1 = 16        dim2 = 48 + 4 * (chnn - 1)        dim3 = 96 + 4 * (chnn - 1)        self.level1 = CBR(3, 12, 3, 2)        self.level2_0 = SEseparableCBR(12,dim1, 3,2, divide=1)        self.level2 = nn.LayerList()        for i in range(0, p):            if i ==0:                self.level2.append(S2module(dim1, dim2, config=config[i], add=False))            else:                self.level2.append(S2module(dim2, dim2,config=config[i]))        self.BR2 = BR(dim2+dim1)        self.level3_0 =SEseparableCBR(dim2+dim1,dim2, 3,2, divide=2)        self.level3 = nn.LayerList()        for i in range(0, q):            if i==0:                self.level3.append(S2module(dim2, dim3, config=config[2 + i], add=False))            else:                self.level3.append(S2module(dim3, dim3,config=config[2+i]))        self.BR3 = BR(dim3+dim2)        self.classifier = C(dim3+dim2, classes, 1, 1)    def forward(self, input):        '''        :param input: Receives the input RGB image        :return: the transformed feature map with spatial dimensions 1/8th of the input image        '''        output1 = self.level1(input) #8h 8w        output2_0 = self.level2_0(output1)  # 4h 4w        for i, layer in enumerate(self.level2):            if i == 0:                output2 = layer(output2_0)            else:                output2 = layer(output2) # 2h 2w        output3_0 = self.level3_0(self.BR2(paddle.concat([output2_0, output2],1)))  # h w        for i, layer in enumerate(self.level3):            if i == 0:                output3 = layer(output3_0)            else:                output3 = layer(output3)        output3_cat = self.BR3(paddle.concat([output3_0, output3], 1))        classifier = self.classifier(output3_cat)        return classifierclass SINet(nn.Layer):    def __init__(self,config, classes=20, p=2, q=3, chnn=1.0):        '''        :param classes: number of classes in the dataset. Default is 20 for the cityscapes        :param p: depth multiplier        :param q: depth multiplier        '''        super().__init__()        dim2 = 48 + 4 * (chnn - 1)        self.encoder = SINet_Encoder(config, classes, p, q, chnn)        self.up = nn.Upsample(mode='bilinear', align_corners=True, align_mode=0, scale_factor=2)        self.bn_3 = nn.BatchNorm2D(classes, epsilon=1e-03)        self.level2_C = CBR(dim2, classes, 1, 1)        self.bn_2 = nn.BatchNorm2D(classes, epsilon=1e-03)        self.classifier = nn.Sequential(        nn.Upsample(mode='bilinear', align_corners=True, align_mode=0, scale_factor=2),        nn.Conv2D(classes, classes, 3, 1, 1, bias_attr=False))    def forward(self, input):        '''        :param input: RGB image        :return: transformed feature map        '''        output1 = self.encoder.level1(input)  # 8h 8w        output2_0 = self.encoder.level2_0(output1)  # 4h 4w        for i, layer in enumerate(self.encoder.level2):            if i == 0:                output2 = layer(output2_0)            else:                output2 = layer(output2)  # 2h 2w        output3_0 = self.encoder.level3_0(self.encoder.BR2(paddle.concat([output2_0, output2], 1)))  # h w        for i, layer in enumerate(self.encoder.level3):            if i == 0:                output3 = layer(output3_0)            else:                output3 = layer(output3)        output3_cat = self.encoder.BR3(paddle.concat([output3_0, output3], 1))        Enc_final = self.encoder.classifier(output3_cat) #1/8        Dnc_stage1 = self.bn_3(self.up(Enc_final))  # 1/4        stage1_confidence = paddle.max(nn.functional.softmax(Dnc_stage1, 1), axis=1)        b, c, h, w = Dnc_stage1.shape        stage1_gate = (1-stage1_confidence).unsqueeze(1).expand([b, c, h, w])        Dnc_stage2_0 = self.level2_C(output2)  # 2h 2w        Dnc_stage2 = self.bn_2(self.up(paddle.add(paddle.multiply(Dnc_stage2_0, stage1_gate), (Dnc_stage1))))  # 4h 4w        classifier = self.classifier(Dnc_stage2)        return classifier

   In [8]

# model/extremeC3.py'''ExtPortraitSegCopyright (c) 2019-present NAVER Corp.MIT license'''import paddleimport paddle.nn as nnbasic_0 = 24basic_1 = 48basic_2 = 56basic_3 = 24class CBR(nn.Layer):    '''    This class defines the convolution layer with batch normalization and PReLU activation    '''    def __init__(self, nIn, nOut, kSize, stride=1):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param kSize: kernel size        :param stride: stride rate for down-sampling. Default is 1        '''        super().__init__()        padding = int((kSize - 1) / 2)        # self.conv = nn.Conv2D(nIn, nOut, kSize, stride=stride, padding=padding, bias_attr=False)        self.conv = nn.Conv2D(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias_attr=False)        # self.conv1 = nn.Conv2D(nOut, nOut, (1, kSize), stride=1, padding=(0, padding), bias_attr=False)        self.bn = nn.BatchNorm2D(nOut, epsilon=1e-03)        self.act = nn.PReLU(nOut)        # self.act = nn.ReLU()    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        output = self.conv(input)        # output = self.conv1(output)        output = self.bn(output)        output = self.act(output)        return outputclass BR(nn.Layer):    '''        This class groups the batch normalization and PReLU activation    '''    def __init__(self, nOut):        '''        :param nOut: output feature maps        '''        super().__init__()        self.bn = nn.BatchNorm2D(nOut, epsilon=1e-03)        self.act = nn.PReLU(nOut)        # self.act = nn.ReLU()    def forward(self, input):        '''        :param input: input feature map        :return: normalized and thresholded feature map        '''        output = self.bn(input)        output = self.act(output)        return outputclass CB(nn.Layer):    '''       This class groups the convolution and batch normalization    '''    def __init__(self, nIn, nOut, kSize, stride=1):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param kSize: kernel size        :param stride: optinal stide for down-sampling        '''        super().__init__()        padding = int((kSize - 1) / 2)        self.conv = nn.Conv2D(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias_attr=False)        self.bn = nn.BatchNorm2D(nOut, epsilon=1e-03)    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        output = self.conv(input)        output = self.bn(output)        return outputclass C(nn.Layer):    '''    This class is for a convolutional layer.    '''    def __init__(self, nIn, nOut, kSize, stride=1):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param kSize: kernel size        :param stride: optional stride rate for down-sampling        '''        super().__init__()        padding = int((kSize - 1) / 2)        self.conv = nn.Conv2D(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias_attr=False)    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        output = self.conv(input)        return outputclass C3block(nn.Layer):    '''    This class defines the dilated convolution.    '''    def __init__(self, nIn, nOut, kSize, stride=1, d=1):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param kSize: kernel size        :param stride: optional stride rate for down-sampling        :param d: optional dilation rate        '''        super().__init__()        padding = int((kSize - 1) / 2) * d        if d == 1:            self.conv =nn.Sequential(                nn.Conv2D(nIn, nIn, (kSize, kSize), stride=stride, padding=(padding, padding), groups=nIn, bias_attr=False,                          dilation=d),                nn.Conv2D(nIn, nOut, kernel_size=1, stride=1, bias_attr=False)            )        else:            combine_kernel = 2 * d - 1            self.conv = nn.Sequential(                nn.Conv2D(nIn, nIn, kernel_size=(combine_kernel, 1), stride=stride, padding=(padding - 1, 0),                          groups=nIn, bias_attr=False),                nn.BatchNorm2D(nIn),                nn.PReLU(nIn),                nn.Conv2D(nIn, nIn, kernel_size=(1, combine_kernel), stride=stride, padding=(0, padding - 1),                          groups=nIn, bias_attr=False),                nn.BatchNorm2D(nIn),                nn.Conv2D(nIn, nIn, (kSize, kSize), stride=stride, padding=(padding, padding), groups=nIn, bias_attr=False,                          dilation=d),                nn.Conv2D(nIn, nOut, kernel_size=1, stride=1, bias_attr=False))    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        output = self.conv(input)        return outputclass Down_advancedC3(nn.Layer):    def __init__(self, nIn, nOut, ratio=[2,4,8]):        super().__init__()        n = int(nOut // 3)        n1 = nOut - 3 * n        self.c1 = C(nIn, n, 3, 2)        self.d1 = C3block(n, n+n1, 3, 1, ratio[0])        self.d2 = C3block(n, n, 3, 1, ratio[1])        self.d3 = C3block(n, n, 3, 1, ratio[2])        self.bn = nn.BatchNorm2D(nOut, epsilon=1e-3)        self.act = nn.PReLU(nOut)    def forward(self, input):        output1 = self.c1(input)        d1 = self.d1(output1)        d2 = self.d2(output1)        d3 = self.d3(output1)        combine = paddle.concat([d1, d2, d3], 1)        output = self.bn(combine)        output = self.act(output)        return outputclass AdvancedC3(nn.Layer):    '''    This class defines the ESP block, which is based on the following principle        Reduce ---> Split ---> Transform --> Merge    '''    def __init__(self, nIn, nOut, add=True, ratio=[2,4,8]):        '''        :param nIn: number of input channels        :param nOut: number of output channels        :param add: if true, add a residual connection through identity operation. You can use projection too as                in ResNet paper, but we avoid to use it if the dimensions are not the same because we do not want to                increase the module complexity        '''        super().__init__()        n = int(nOut // 3)        n1 = nOut - 3 * n        self.c1 = C(nIn, n, 1, 1)        self.d1 = C3block(n, n + n1, 3, 1, ratio[0])        self.d2 = C3block(n, n, 3, 1, ratio[1])        self.d3 = C3block(n, n, 3, 1, ratio[2])        # self.d4 = Double_CDilated(n, n, 3, 1, 12)        # self.conv =C(nOut, nOut, 1,1)        self.bn = BR(nOut)        self.add = add    def forward(self, input):        '''        :param input: input feature map        :return: transformed feature map        '''        # reduce        output1 = self.c1(input)        d1 = self.d1(output1)        d2 = self.d2(output1)        d3 = self.d3(output1)        combine = paddle.concat([d1, d2, d3], 1)        if self.add:            combine = paddle.add(input, combine)        output = self.bn(combine)        return outputclass InputProjectionA(nn.Layer):    '''    This class projects the input image to the same spatial dimensions as the feature map.    For example, if the input image is 512 x512 x3 and spatial dimensions of feature map size are 56x56xF, then    this class will generate an output of 56x56x3    '''    def __init__(self, samplingTimes):        '''        :param samplingTimes: The rate at which you want to down-sample the image        '''        super().__init__()        self.pool = nn.LayerList()        for i in range(0, samplingTimes):            # pyramid-based approach for down-sampling            self.pool.append(nn.AvgPool2D(2, stride=2, padding=0))    def forward(self, input):        '''        :param input: Input RGB Image        :return: down-sampled image (pyramid-based approach)        '''        for pool in self.pool:            input = pool(input)        return inputclass ExtremeC3NetCoarse(nn.Layer):    '''    This class defines the ESPNet-C network in the paper    '''    def __init__(self, classes=20, p=5, q=3):        '''        :param classes: number of classes in the dataset. Default is 20 for the cityscapes        :param p: depth multiplier        :param q: depth multiplier        '''        super().__init__()        self.level1 = CBR(3, basic_0, 3, 2)        self.sample1 = InputProjectionA(1)        self.sample2 = InputProjectionA(2)        self.b1 = BR(basic_0 + 3)        self.level2_0 = Down_advancedC3(basic_0 + 3, basic_1, ratio=[1, 2, 3])  # , ratio=[1,2,3]        self.level2 = nn.LayerList()        for i in range(0, p):            self.level2.append(                AdvancedC3(basic_1, basic_1, ratio=[1, 3, 4]))  # , ratio=[1,3,4]        self.b2 = BR(basic_1 * 2 + 3)        self.level3_0 = AdvancedC3(basic_1 * 2 + 3, basic_2, add=False,                                                            ratio=[1, 3, 5])  # , ratio=[1,3,5]        self.level3 = nn.LayerList()        for i in range(0, q):            self.level3.append(AdvancedC3(basic_2, basic_2))        self.b3 = BR(basic_2 * 2)        self.Coarseclassifier = C(basic_2*2, classes, 1, 1)    def forward(self, input):        '''        :param input: Receives the input RGB image        :return: the transformed feature map with spatial dimensions 1/8th of the input image        '''        output0 = self.level1(input)        inp1 = self.sample1(input)        inp2 = self.sample2(input)        output0_cat = self.b1(paddle.concat([output0, inp1], 1))        output1_0 = self.level2_0(output0_cat)  # down-sampled        for i, layer in enumerate(self.level2):            if i == 0:                output1 = layer(output1_0)            else:                output1 = layer(output1)        output1_cat = self.b2(paddle.concat([output1, output1_0, inp2], 1))        output2_0 = self.level3_0(output1_cat)  # down-sampled        for i, layer in enumerate(self.level3):            if i == 0:                output2 = layer(output2_0)            else:                output2 = layer(output2)        output2_cat = self.b3(paddle.concat([output2_0, output2], 1))        classifier = self.Coarseclassifier(output2_cat)        return classifierclass ExtremeC3Net(nn.Layer):    '''    This class defines the ESPNet-C network in the paper    '''    def __init__(self, classes=20, p=5, q=3):        '''        :param classes: number of classes in the dataset. Default is 20 for the cityscapes        :param p: depth multiplier        :param q: depth multiplier        '''        super().__init__()        self.encoder = ExtremeC3NetCoarse(classes, p, q)        # # load the encoder modules        del self.encoder.Coarseclassifier        self.upsample = nn.Sequential(            nn.Conv2D(kernel_size=(1, 1), in_channels=basic_2*2, out_channels=basic_3,bias_attr=False),            nn.BatchNorm2D(basic_3),            nn.Upsample(mode='bilinear', align_corners=True, align_mode=0, scale_factor=2)        )        self.Fine = nn.Sequential(            # nn.Conv2D(kernel_size=3, stride=2, padding=1, in_channels=3, out_channels=basic_3,bias_attr=False),            C(3, basic_3, 3, 2),            AdvancedC3(basic_3, basic_3, add=True),            # nn.BatchNorm2D(basic_3, epsilon=1e-03),        )        self.classifier = nn.Sequential(            BR(basic_3),            nn.Upsample(mode='bilinear', align_corners=True, align_mode=0, scale_factor=2),            nn.Conv2D(kernel_size=(1, 1), in_channels=basic_3, out_channels=classes, bias_attr=False),        )    def forward(self, input):        '''        :param input: Receives the input RGB image        :return: the transformed feature map with spatial dimensions 1/8th of the input image        '''        output0 = self.encoder.level1(input)        inp1 = self.encoder.sample1(input)        inp2 = self.encoder.sample2(input)        output0_cat = self.encoder.b1(paddle.concat([output0, inp1], 1))        output1_0 = self.encoder.level2_0(output0_cat)  # down-sampled        for i, layer in enumerate(self.encoder.level2):            if i == 0:                output1 = layer(output1_0)            else:                output1 = layer(output1)        output1_cat = self.encoder.b2(paddle.concat([output1, output1_0, inp2], 1))        output2_0 = self.encoder.level3_0(output1_cat)  # down-sampled        for i, layer in enumerate(self.encoder.level3):            if i == 0:                output2 = layer(output2_0)            else:                output2 = layer(output2)        output2_cat = self.encoder.b3(paddle.concat([output2_0, output2], 1))        Coarse = self.upsample(output2_cat)        Fine =  self.Fine(input)        classifier = self.classifier(paddle.add(Coarse, Fine))                return classifier

   

以上就是轻量级人像分割模型:SINet 和 ExtremeC3Net的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/42243.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月6日 18:16:35
下一篇 2025年11月6日 18:19:51

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    300

发表回复

登录后才能评论
关注微信