刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习

大型语言模型(LLMs)的进步在很大程度上推动了代码生成领域的发展。此前的研究中,强化学习(RL)与编译器的反馈信号被结合在一起,用于探索LLMs的输出空间,以优化代码生成的质量。

但当下还存在两个问题:

1. 强化学习探索很难直接适配到「复杂的人类需求」,即要求LLMs生成「长序列代码」;

2. 由于单元测试可能无法覆盖复杂的代码,因此使用未执行的代码片段来优化LLMs是无效的。

为了应对这些挑战,研究人员提出了一种名为StepCoder的新型强化学习框架,该框架由复旦大学、华中科技大学和皇家理工学院的专家共同开发。StepCoder包含两个关键组件,旨在改善代码生成的效率和质量。

1. CCCS通过将长序列代码生成任务分解为代码完成子任务课程来解决探索挑战;

2. FGO通过屏蔽未执行的代码段来优化模型,以提供细粒度优化。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习

论文链接:https://arxiv.org/pdf/2402.01391.pdf

项目链接:https://github.com/Ablustrund/APPS_Plus

代码小浣熊 代码小浣熊

代码小浣熊是基于商汤大语言模型的软件智能研发助手,覆盖软件需求分析、架构设计、代码编写、软件测试等环节

代码小浣熊 51 查看详情 代码小浣熊

研究人员还构建了用于强化学习训练的APPS+数据集,手动验证以确保单元测试的正确性。

实验结果表明,该方法提高了探索输出空间的能力,并在相应的基准测试中优于最先进的方法。

StepCoder

在代码生成过程中,普通的强化学习探索(exploration)很难处理「奖励稀疏且延迟的环境」和涉及「长序列的复杂需求」。

刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习

在CCCS(Curriculum of Code Completion Subtasks)阶段,研究人员将复杂的探索问题分解为一系列子任务。利用标准解(canonical solution)的一部分作为提示(prompt),LLM可以从简单序列开始探索。

奖励的计算只与可执行的代码片段相关,因此用整个代码(图中红色部分)来优化LLM是不精确的(图中灰色部分)。

在FGO(Fine-Grained Optimization)阶段,研究人员对单元测试中未执行的tokens(红色部分)进行遮罩,只使用已执行的tokens(绿色部分)计算损失函数,从而可以提供细粒度的优化。

预备知识

假定刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习是用于代码生成的训练数据集,其中x、y、u分别表示人类需求(即任务描述)、标准解和单元测试样本。

刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习是通过自动分析标准解yi的抽象语法树得出的条件语句列表,其中st和en分别表示语句的起始位置和结束位置。

对于人类需求x,其标准解y可表示为刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习;在代码生成阶段,给定人类需求x,最终状态是通过单元测试u的代码集合。

方法细节

StepCoder集成了两个关键组件:CCCS和FGO,其中CCCS的目的是将代码生成任务分解为代码完成子任务的课程,可以减轻RL中的探索挑战;FGO专为代码生成任务而设计,通过只计算已执行代码片段的损失来提供细粒度优化。

CCCS

在代码生成过程中,要解决复杂的人类需求,通常需要策略模型采取较长的动作序列。同时,编译器的反馈是延迟和稀疏的,也就是说,策略模型只有在生成整个代码后才会收到奖励。在这种情况下,探索非常困难。

该方法的核心是将这样一长串探索问题分解为一系列简短、易于探索的子任务,研究人员将代码生成简化为代码补全子任务,其中子任务由训练数据集中的典型解决方案自动构建。

对于人类需求x,在CCCS的早期训练阶段,探索的起点s*是最终状态附近的状态。

具体来说,研究人员提供人类需求x和标准解刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习的前半部分,并训练策略模型来根据x’=(x, xp)完成代码。

假定y^是xp和输出轨迹τ的组合序列,即yˆ=(xp,τ),奖励模型根据以y^为输入的代码片段τ的正确性提供奖励r。

刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习

研究人员使用近端策略优化(PPO)算法,通过利用奖励r和轨迹τ来优化策略模型πθ 。

在优化阶段,用于提供提示的规范解代码段xp将被屏蔽,这样它就不会对策略模型πθ更新的梯度产生影响。

CCCS通过最大化反对函数来优化策略模型πθ,其中π^ref是PPO中的参考模型,由SFT模型初始化。

刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习

随着训练的进行,探索的起点s*会逐渐向标准解的起点移动,具体来说,为每个训练样本设置一个阈值ρ,每当πθ生成的代码段的累计正确率大于ρ时,就将starting point向beginning移动。

在训练的后期阶段,该方法的探索过程等同于原始强化学习的探索过程,即s*=0,策略模型仅以人类需求为输入生成代码。

在条件语句的起始位置对初识点s*进行采样,以完成剩余的未写代码段。

具体来说,条件语句越多,程序的独立路径就越多,逻辑复杂度也就越高,复杂性要求更频繁地采样以提高训练质量,而条件语句较少的程序则不需要那么频繁地采样。

这种采样方法可以均衡地抽取具有代表性的代码结构,同时兼顾训练数据集中复杂和简单的语义结构。

为了加速训练阶段,研究人员将第i个样本的课程数量设置为刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习,其中Ei是其条件语句的数量。第i个样本的训练课程跨度为刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习,而不是1。

CCCS的主要观点可归纳如下:

1. 从接近目标的状态(即最终状态)开始探索很容易;

2. 从距离目标较远的状态开始探索具有挑战性,但如果能利用已经学会如何达到目标的状态,探索就会变得容易。

FGO

代码生成中奖励与行动之间的关系不同于其他强化学习任务(如Atari),在代码生成中,可以排除一组与计算生成代码中的奖励无关的动作。

具体来说,对于单元测试,编译器的反馈只与执行的代码片段,然而,在普通RL优化目标中,轨迹上的所有动作都会参与到梯度计算中,而梯度计算是不精确的。

为了提高优化精度,研究人员屏蔽了单元测试中未执行的行动(即tokens),策略模型的损失。

刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习

实验部分

APPS+数据集

强化学习需要大量高质量的训练数据,在调研过程中,研究人员发现在目前可用的开源数据集中,只有APPS符合这一要求。

但APPS中存在一些不正确的实例,例如缺少输入、输出或标准解,其中标准解可能无法编译或无法执行,或者执行输出存在差异。

为了完善APPS数据集,研究人员过滤掉了缺少输入、输出或标准解的实例,然后对输入和输出的格式进行了标准化,以方便单元测试的执行和比较;然后对每个实例进行了单元测试和人工分析,剔除了代码不完整或不相关、语法错误、API误用或缺少库依赖关系的实例。

对于输出中的差异,研究人员会手动审核问题描述,纠正预期输出或消除实例。

最后构建了得到APPS+数据集,包含了7456个实例,每个实例包括编程问题描述、标准解决方案、函数名称、单元测试(即输入和输出)和启动代码(即标准解决方案的开头部分)。

刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习

实验结果

为了评估其他LLM和StepCoder在代码生成方面的性能,研究人员在APPS+数据集上进行了实验。

结果表明,基于RL的模型优于其他语言模型,包括基础模型和SFT模型。

刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习

研究人员有理由推断,强化学习可以在编译器反馈的指导下,更有效地浏览模型的输出空间,从而进一步提高代码生成的质量。

此外,StepCoder超越了所有基线模型,包括其他基于RL的方法,获得了最高分。

具体来说,该方法在「入门」(Introductory)、「面试」(Interview)和「竞赛」(Competition)级别的测试题目中分别获得了59.7%、23.5%和 8.6%的高分。

与其他基于强化学习的方法相比,该方法通过将复杂的代码生成任务简化为代码完成子任务,在探索输出空间方面表现出色,并且FGO过程在精确优化策略模型方面发挥了关键作用。

还可以发现,在基于相同架构网络的APPS+数据集上,StepCoder的性能优于对微调进行有监督的LLM;与骨干网相比,后者几乎没有提高生成代码的通过率,这也直接表明,使用编译器反馈优化模型的方法比代码生成中的下一个token预测更能提高生成代码的质量。

以上就是刷榜「代码生成」任务!复旦等发布StepCoder框架:从编译器反馈信号中强化学习的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/425601.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月7日 11:23:01
下一篇 2025年11月7日 11:24:23

相关推荐

  • 怎样用免费工具美化PPT_免费美化PPT的实用方法分享

    利用KIMI智能助手可免费将PPT美化为科技感风格,但需核对文字准确性;2. 天工AI擅长优化内容结构,提升逻辑性,适合高质量内容需求;3. SlidesAI支持语音输入与自动排版,操作便捷,利于紧急场景;4. Prezo提供多种模板,自动生成图文并茂幻灯片,适合学生与初创团队。 如果您有一份内容完…

    2025年12月6日 软件教程
    100
  • Pages怎么协作编辑同一文档 Pages多人实时协作的流程

    首先启用Pages共享功能,点击右上角共享按钮并选择“添加协作者”,设置为可编辑并生成链接;接着复制链接通过邮件或社交软件发送给成员,确保其使用Apple ID登录iCloud后即可加入编辑;也可直接在共享菜单中输入邮箱地址定向邀请,设定编辑权限后发送;最后在共享面板中管理协作者权限,查看实时在线状…

    2025年12月6日 软件教程
    200
  • REDMI K90系列正式发布,售价2599元起!

    10月23日,redmi k90系列正式亮相,推出redmi k90与redmi k90 pro max两款新机。其中,redmi k90搭载骁龙8至尊版处理器、7100mah大电池及100w有线快充等多项旗舰配置,起售价为2599元,官方称其为k系列迄今为止最完整的标准版本。 图源:REDMI红米…

    2025年12月6日 行业动态
    200
  • Linux中如何安装Nginx服务_Linux安装Nginx服务的完整指南

    首先更新系统软件包,然后通过对应包管理器安装Nginx,启动并启用服务,开放防火墙端口,最后验证欢迎页显示以确认安装成功。 在Linux系统中安装Nginx服务是搭建Web服务器的第一步。Nginx以高性能、低资源消耗和良好的并发处理能力著称,广泛用于静态内容服务、反向代理和负载均衡。以下是在主流L…

    2025年12月6日 运维
    000
  • Linux journalctl与systemctl status结合分析

    先看 systemctl status 确认服务状态,再用 journalctl 查看详细日志。例如 nginx 启动失败时,systemctl status 显示 Active: failed,journalctl -u nginx 发现端口 80 被占用,结合两者可快速定位问题根源。 在 Lin…

    2025年12月6日 运维
    100
  • 华为新机发布计划曝光:Pura 90系列或明年4月登场

    近日,有数码博主透露了华为2025年至2026年的新品规划,其中pura 90系列预计在2026年4月发布,有望成为华为新一代影像旗舰。根据路线图,华为将在2025年底至2026年陆续推出mate 80系列、折叠屏新机mate x7系列以及nova 15系列,而pura 90系列则将成为2026年上…

    2025年12月6日 行业动态
    100
  • Linux如何优化系统性能_Linux系统性能优化的实用方法

    优化Linux性能需先监控资源使用,通过top、vmstat等命令分析负载,再调整内核参数如TCP优化与内存交换,结合关闭无用服务、选用合适文件系统与I/O调度器,持续按需调优以提升系统效率。 Linux系统性能优化的核心在于合理配置资源、监控系统状态并及时调整瓶颈环节。通过一系列实用手段,可以显著…

    2025年12月6日 运维
    000
  • 曝小米17 Air正在筹备 超薄机身+2亿像素+eSIM技术?

    近日,手机行业再度掀起超薄机型热潮,三星与苹果已相继推出s25 edge与iphone air等轻薄旗舰,引发市场高度关注。在此趋势下,多家国产厂商被曝正积极布局相关技术,加速抢占这一细分赛道。据业内人士消息,小米的超薄旗舰机型小米17 air已进入筹备阶段。 小米17 Pro 爆料显示,小米正在评…

    2025年12月6日 行业动态
    000
  • 荣耀手表5Pro 10月23日正式开启首销国补优惠价1359.2元起售

    荣耀手表5pro自9月25日开启全渠道预售以来,市场热度持续攀升,上市初期便迎来抢购热潮,一度出现全线售罄、供不应求的局面。10月23日,荣耀手表5pro正式迎来首销,提供蓝牙版与esim版两种选择。其中,蓝牙版本的攀登者(橙色)、开拓者(黑色)和远航者(灰色)首销期间享受国补优惠价,到手价为135…

    2025年12月6日 行业动态
    000
  • 环境搭建docker环境下如何快速部署mysql集群

    使用Docker Compose部署MySQL主从集群,通过配置文件设置server-id和binlog,编写docker-compose.yml定义主从服务并组网,启动后创建复制用户并配置主从连接,最后验证数据同步是否正常。 在Docker环境下快速部署MySQL集群,关键在于合理使用Docker…

    2025年12月6日 数据库
    000
  • Xbox删忍龙美女角色 斯宾塞致敬板垣伴信被喷太虚伪

    近日,海外游戏推主@HaileyEira公开发表言论,批评Xbox负责人菲尔·斯宾塞不配向已故的《死或生》与《忍者龙剑传》系列之父板垣伴信致敬。她指出,Xbox并未真正尊重这位传奇制作人的创作遗产,反而在宣传相关作品时对内容进行了审查和删减。 所涉游戏为年初推出的《忍者龙剑传2:黑之章》,该作采用虚…

    2025年12月6日 游戏教程
    000
  • 如何在mysql中分析索引未命中问题

    答案是通过EXPLAIN分析执行计划,检查索引使用情况,优化WHERE条件写法,避免索引失效,结合慢查询日志定位问题SQL,并根据查询模式合理设计索引。 当 MySQL 查询性能下降,很可能是索引未命中导致的。要分析这类问题,核心是理解查询执行计划、检查索引设计是否合理,并结合实际数据访问模式进行优…

    2025年12月6日 数据库
    000
  • VSCode入门:基础配置与插件推荐

    刚用VSCode,别急着装一堆东西。先把基础设好,再按需求加插件,效率高还不卡。核心就三步:界面顺手、主题舒服、功能够用。 设置中文和常用界面 打开软件,左边活动栏有五个图标,点最下面那个“扩展”。搜索“Chinese”,装上官方出的“Chinese (Simplified) Language Pa…

    2025年12月6日 开发工具
    000
  • php查询代码怎么写_php数据库查询语句编写技巧与实例

    在PHP中进行数据库查询,最常用的方式是使用MySQLi或PDO扩展连接MySQL数据库。下面介绍基本的查询代码写法、编写技巧以及实用示例,帮助你高效安全地操作数据库。 1. 使用MySQLi进行查询(面向对象方式) 这是较为推荐的方式,适合大多数中小型项目。 // 创建连接$host = ‘loc…

    2025年12月6日 后端开发
    000
  • 重现iPhone X颠覆性时刻!苹果2027年跳过19命名iPhone 20

    10月23日,有消息称,苹果或将再次调整iPhone的发布节奏,考虑跳过“iPhone 19”,并于2027年直接推出“iPhone 20”系列。 此举据传是为了庆祝初代iPhone发布二十周年,同时开启新一轮的设计革新,目标是复刻2017年iPhone X带来的划时代变革。 据悉,苹果或将告别长期…

    2025年12月6日 手机教程
    000
  • 如何在mysql中使用索引提高查询效率

    合理创建索引可显著提升MySQL查询效率,应优先为WHERE、JOIN、ORDER BY等高频字段建立B-Tree复合索引,如CREATE INDEX idx_status_created ON users(status, created_at, id),并遵循最左前缀原则;避免在索引列使用函数或前…

    2025年12月6日 数据库
    000
  • Linux命令行中free命令的使用方法

    free命令用于查看Linux内存使用情况,包括总内存、已用、空闲、共享、缓存及可用内存;使用-h可读格式显示,-s周期刷新,-c限制次数,-t显示总计,帮助快速评估系统内存状态。 free命令用于显示Linux系统中内存和交换空间的使用情况,包括物理内存、已用内存、空闲内存以及缓存和缓冲区的占用情…

    2025年12月6日 运维
    000
  • 在 Java 中使用 Argparse4j 接收 Duration 类型参数

    本文介绍了如何使用 `net.sourceforge.argparse4j` 库在 Java 命令行程序中接收 `java.time.Duration` 类型的参数。由于 `Duration` 不是原始数据类型,需要通过自定义类型转换器或工厂方法来处理。文章提供了两种实现方案,分别基于 `value…

    2025年12月6日 java
    000
  • Linux命令行中tail -f命令的详细应用

    tail -f 用于实时监控文件新增内容,常用于日志查看;支持 -F 处理轮转、-n 指定行数、结合 grep 过滤,可监控多文件,需注意权限与资源释放。 tail -f 是 Linux 中一个非常实用的命令,主要用于实时查看文件的新增内容,尤其在监控日志文件时极为常见。它会持续输出文件末尾新增的数…

    2025年12月6日 运维
    000
  • Phaser 3游戏画布响应式布局:实现高度适配与宽度裁剪

    本文深入探讨phaser 3游戏画布在特定响应式场景下的布局策略,尤其是在需要画布高度适配父容器并允许左右内容裁剪时。通过结合phaser的scalemanager中的`height_controls_width`模式与精细的css布局,本教程将展示如何实现一个既能保持游戏画面比例,又能完美融入不同…

    2025年12月6日 web前端
    000

发表回复

登录后才能评论
关注微信