深入了解MLOps:MLOps的定义、概念和应用探讨

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

mlops是什么?mlops概念和应用介绍

什么是MLOps?

通过可重复且高效的工作流程交付机器学习模型的学科被称为机器学习操作(MLOps)。

MLOps与软件开发生命周期的DevOps类似,旨在将高性能ML应用程序持续交付到大规模生产中。它特别关注ML在现有SDLC和CI/CD程序中存在的独特需求,以创造一个与之并存的新生命周期。这样做可以为ML带来更高效的工作流程和更好的结果。

MLOps方法提高了机器学习和深度学习模型的质量,简化了管理流程,并实现了自动化部署。模型更易与业务需求和法规要求保持一致。

机器学习(ML)具有独特的生命周期,与传统软件不同。ML的核心是数据,而不是应用程序活动。因此,代码的重点在于数据管理。ML系统是一个开放的、不断发展的系统。一旦模型分发出去,任务才刚刚开始。为了实现最佳性能,需要定期监控、重新训练和重新部署生产中的模型,以应对不断变化的数据信号。这个过程是持续的,需要不断优化和调整,以确保模型的准确性和可靠性。通过持续的迭代和改进,可以使ML系统保持高效和有效,以适应不断变化的需求。

ML生命周期是机器学习模型的持续集成、开发和交付过程。模型在开发、部署和运营三个关键阶段不断循环,以不断调整和优化其在生产中的表现。

MLOps是如何工作的?

MLOps提供了一种解决方案,可以帮助数据科学家、机器学习工程师和应用程序开发人员解决与软件工程类似的问题。它类似于DevOps,解决了数据科学家将模型交付给生产环境并进行维护的挑战。MLOps专注于协作,使团队能够为客户提供价值。通过MLOps,团队可以更好地管理模型的生命周期、版本控制和部署,从而提高模型的可用性和可靠性。这种方法还可以确保模型的一致性和可重复性,使团队能够更快地推出新的功能和改进。总之,MLOps与DevOps在解决软件工程问题方面有许多共同之处,为数据科学家提供了类似的优势。

MLOps包括所有基本组件以及将它们全部集成在一起的能力——从数据源到合规性工具。

为了构建可重复的机器学习(ML)模型,我们可以将建模代码、依赖项和运行时要求进行打包。通过实现可重现的ML,我们可以降低运输和维护模型版本的成本。打包之后,大规模部署也变得相当容易。在MLOps旅程中,这个阶段提供了可重复性,并且是几个基本步骤之一。

AppMall应用商店 AppMall应用商店

AI应用商店,提供即时交付、按需付费的人工智能应用服务

AppMall应用商店 56 查看详情 AppMall应用商店

MLOps的目标是通过一套一致的原则来支持机器学习模型的整个生命周期。这些原则包括源代码控制的实施、模型版本注册表的维护、标准化的打包、验证清单的创建、部署方法的定义以及监控协议的制定。

由于监控管道会注意到数据漂移,因此成熟的MLOps技术允许企业确定何时需要重新训练模型。它还可以帮助确定使用了哪些数据、模型版本和代码库来进行特定预测。

MLOps的好处

更快地交付更多模型:部署和迭代模型的速度让您在机器学习方面具有竞争优势。MLOps的可重复、可扩展方法能够更快地将机器学习投入生产。

1.最大化ROI:如果MLOps存在的话,模型和基础设施监控就变成一项零散的工作。就可以快速监控和调整模型和基础架构,从而在减少基础架构支出的同时获得额外的利润率。

2.提高业务竞争力:为了在竞争中保持领先地位,需要经常调整模型。如果使用MLOps构建自动化管道和工作流,就能降低ML的总体成本,同时保持竞争力。

3.灵活集成:想使用最前沿的机器学习技术,可以使用MLOps简单地维护与各种数据科学工具的集成来完成。

以上就是深入了解MLOps:MLOps的定义、概念和应用探讨的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/435001.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月7日 15:44:00
下一篇 2025年11月7日 15:45:24

相关推荐

  • 人工智能如何将数据中心转变为可持续性的动力

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 数据中心历来是许多技术进步的支柱,现在面临的不仅仅是基础设施提供商的问题。人工智能的快速发展凸显了数据中心迫切需要更加敏捷、创新和协作,为这个新时代提供动力。 人工智能和机器学习的蓬勃发展,加上…

    2025年12月2日 科技
    000
  • 如何通过人工智能(AI)和机器学习应对零售劳动力和执行方面的挑战

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 斑马技术大中华区技术总监 程宁 面对不断增长的需求,零售团队人员数量及具体运营执行是否能及时匹%ignore_a_1%,正成为零售商们不得不面临的挑战。零售团队人员的短缺将使商店难以正常运营。当…

    2025年12月2日
    000
  • 用于数据增强的十个Python库

    数据增强是人工智能和机器学习领域的一项关键技术。它涉及到创建现有数据集的变体,提高模型性能和泛化。python是一种流行的ai和ml语言,它提供了几个强大的数据增强库。在本文中,我们将介绍数据增强的十个python库,并为每个库提供代码片段和解释。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索…

    2025年12月1日 科技
    000
  • 机器学习算法中的特征筛选问题

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 机器学习算法中的特征筛选问题 在机器学习领域中,特征筛选是一个非常重要的问题,它的目标是从大量的特征中选择出对预测任务最有用的特征。通过特征筛选可以降低维度,减少计算复杂度,提高模型的准确性和解…

    2025年12月1日 科技
    000
  • 解决不均衡数据集的分类方法有哪些?

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 在机器学习领域,不平衡数据集是一种常见问题,指的是训练数据集中不同类别的样本数量差异很大。例如,在二分类问题中,正样本数量远远小于负样本数量。这会导致训练出的模型更倾向于预测数量更多的类别,而忽…

    2025年12月1日 科技
    000
  • 零知识机器学习:应用与发展潜力

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 零知识机器学习(Zero-Knowledge Machine Learning,ZKML)是一种新兴的机器学习技术,旨在在保护数据隐私的同时实现机器学习任务。它的潜力在于解决当前机器学习中普遍存…

    2025年12月1日 科技
    000
  • 了解自动编码器的训练方法:从架构探究开始

    噪声数据是机器学习中常见的问题之一,自动编码器是解决这类问题的有效方法。本文将介绍自动编码器的结构和正确训练方法。 自动编码器是一种无监督学习的人工神经网络,用于学习数据的编码。其目标是通过训练网络来捕捉输入图像的关键特征,并将其转化为低维表示,常用于降维处理。 自动编码器的架构 自动编码器由3部分…

    2025年12月1日 科技
    000
  • 零基础图像识别的学习方法

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 基于零次学习的图像识别是一种新兴的技术,它与传统的图像识别方法不同。传统的图像识别需要通过训练数据来学习特征和分类规则,而零次学习则不需要预先训练模型。它是根据待识别图像的特征进行实时分类,从而…

    2025年12月1日 科技
    000
  • 手写识别技术及其算法分类

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 机器学习技术的进步必定推动手写识别技术的发展。本文将重点介绍目前表现优异的手写识别技术和算法。 matlab基础知识简介 中文WORD版 MATLAB(矩阵实验室)是MATrix LABorat…

    2025年12月1日 科技
    000
  • 拥抱未来:塑造 2024 年的顶尖技术

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 在充满活力的技术创新领域,每一年都会带来一系列进步,重新定义我们的生活、工作以及与周围世界互动的方式。 步入 2024 年,大量突破性技术有望彻底改变我们生活的各个方面,从医疗保健、交通到通信和…

    2025年12月1日 科技
    000
  • Web 端实时防挡脸弹幕(基于机器学习)

    防挡脸弹幕,即大量弹幕飘过,但不会遮挡视频画面中的人物,看起来像是从人物背后飘过去的。 机器学习已经火了好几年了,但很多人都不知道浏览器中也能运行这些能力; 本文介绍在视频弹幕方面的实践优化过程,文末列举了一些本方案可适用的场景,期望能开启一些脑洞。 mediapipe Demo(https://g…

    2025年12月1日 科技
    000
  • 机器人技能大比拼

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 2023年6月30日,合肥市瑶海区的三十八中学北校区成功举办了第八届青少年机器人竞赛。超过400名青少年在全区参与了包括机器人创意、综合技能和创新挑战在内的8个项目的比赛,共同感受科技的魅力。(…

    2025年12月1日 科技
    100
  • 智能化解决方案:保障数据安全阻击泄露和丢失

    网络安全是一场不断进行的战斗,每天都会出现新的威胁,首席信息安全官 (ciso) 正在努力跟进。他们承受着警报的压力,团队也面临着挑战。因此,ciso 及其团队面临着持续的压力,需要寻找新的创新方法来保护组织免受伤害。其中一种应对方法是利用人工智能 (ai) 的力量。人工智能可以帮助识别潜在威胁,自…

    2025年12月1日 科技
    000
  • 九种常用的Python特征重要性分析方法

    特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 为什么特征重要性分析很重要? 如果有一个包…

    2025年12月1日 科技
    000
  • 人工智能和机器学习将如何改变数据中心?

    高盛预计,到 2025 年,全球人工智能投资预计将达到 2000 亿美元。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 这些快速发展的技术的巨大潜力刺激了其用例的显着增加,从医疗保健转型到增强客户体验。 尽管人们已经对人工智能和机器学习在…

    2025年12月1日 科技
    000
  • 使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

    强化学习(rl)是一种机器学习方法,它允许代理通过试错来学习如何在环境中表现。行为主体会因为采取行动导致预期结果而获得奖励或受到惩罚。随着时间的推移,代理会学会采取行动,以使得其预期回报最大化 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ …

    2025年12月1日 科技
    000
  • 2023年AI和ML在数据中心的十大新兴应用

    人工智能(ai)和机器学习(ml)已经成为数据中心领域的关键技术。到2023年,我们将目睹数据中心运营、效率和安全性的革命,这要归功于人工智能和机器学习的应用。这些技术越来越多地实现了任务的自动化,优化了资源管理,并提高了整个数据中心的性能。本文详细探讨了十种新兴的数据中心应用,这些应用将在今年彻底…

    2025年12月1日 科技
    100
  • 机器学习 | PyTorch简明教程上篇

    前面几篇文章介绍了特征归一化和张量,接下来开始写两篇pytorch简明教程,主要介绍pytorch简单实践。 1、四则运算 import torcha = torch.tensor([2, 3, 4])b = torch.tensor([3, 4, 5])print(“a + b: “, (a + …

    2025年12月1日 科技
    100
  • 机器学习|PyTorch简明教程下篇

    接着上篇《pytorch简明教程上篇》,继续学习多层感知机,卷积神经网络和lstmnet。 1、多层感知机 多层感知机是一种简单的神经网络,也是深度学习的重要基础。它通过在网络中添加一个或多个隐藏层来克服线性模型的限制。具体的图示如下: ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限…

    2025年12月1日 科技
    000
  • 微软新专利公布:通过机器学习创建出“会脸红”的逼真头像

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 11 月 16 日消息,微软的一项新专利于当地时间周二在美国专利商标局网站上公开,这是一种新的机器学习模型专利,可为用户创作出“更加有生命力”的逼真头像。 据介绍,通过新的机器学习模型,头像或照…

    2025年12月1日 科技
    000

发表回复

登录后才能评论
关注微信