解析零样本学习(ZSL)的定义与意义

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

详解零样本学习(zsl)的概念

零样本学习(ZSL)是一种机器学习范例,利用预先训练的深度学习模型来推广新类别的样本。它的核心思想是将已有的训练实例中的知识转移到测试实例的分类任务中。具体而言,零样本学习技术通过学习中间的语义层和属性,然后在推理过程中应用这些知识来预测新的数据。这种方法允许机器学习模型在没有先前见过的类别上进行分类,实现了对未知类别的识别能力。通过零样本学习,模型可以从有限的训练数据中获得更广泛的泛化能力,提高了在现实世界中面对新问题的适应性。

通义视频 通义视频

通义万相AI视频生成工具

通义视频 70 查看详情 通义视频

需要注意,零样本学习中训练和测试集是不相交的。

零样本学习是迁移学习的一个子领域,主要应用于特征和标签空间完全不同的情况。与常见的同构迁移学习不同,零样本学习不仅仅是微调预训练模型,它需要从无任何样本的情况下学习如何处理新的问题。零样本学习的目标是通过利用已有知识和经验,将这些知识迁移到新的领域中,以便解决新问题。这种异构迁移学习对于处理没有标签或很少标签的情况非常有用,因为它可以通过利用已有的标签信息,来进行预测和分类。因此,零样本学习具有很大的潜力,在许多现实世界的应用中发挥重要作用。

零样本学习数据分类

可见类(Seen Classes):用于训练深度学习模型的数据类,比如已标记的训练数据。

不可见类(Unseen Classes):现有深度模型需要概括的数据类,比如未被标记的训练数据。

辅助信息:由于没有属于不可见类的标记实例可用,因此需要一些辅助信息来解决零样本学习问题。此类辅助信息应包含所有不可见类的信息。

零样本学习还依赖于已标记的可见类和不可见类训练集。可见类和不可见类都在称为语义空间的高维向量空间中相关,其中来自可见类的知识可以转移到不可见类。

零样本学习的阶段

零样本学习涉及训练和推理的两个阶段:

训练:获取有关标记数据样本集的知识。

推理:扩展先前获得的知识,将提供的辅助信息用于新的类集。

零样本学习方法

基于分类器的方法

现有的基于分类器的方法通常采用一对多的解决方案来训练多类零样本分类器。也就是说,对于每个看不见的类,训练一个二进制的一对一分类器。根据构建分类器的方法,我们进一步将基于分类器的方法分为三类。

①对应方法

对应方法旨在通过每个类的二元一对一分类器与其对应的类原型之间的对应关系来构造不可见类的分类器。每个类在语义空间中只有一个对应的原型。因此,这个原型可以看作是这个类的“表示”。同时,在特征空间中,对于每一类,都有一个对应的二元一对一分类器,也可以看作是该类的“表征”。对应方法旨在学习这两种“表示”之间的对应函数。

②关系方法

方法旨在基于不可见类的类间和类内关系来构造分类器或不可见类。在特征空间中,可以利用可用数据学习所看到的类的二进制一对一分类器。同时,可以通过计算相应原型之间的关系来获得可见类和不可见类之间的关系。

③组合方法

组合方法描述了通过组合用于构成类的基本元素的分类器来为不可见类构造分类器的思想。

在组合方法中,认为存在一个构成类的“基本元素”列表。可见类和不可见类中的每个数据点都是这些基本元素的组合。体现在语义空间中,认为每个维度代表一个基本元素,每个类原型表示对应类的这些基本元素的组合。

类原型的每个维度取1或0,表示类是否具有相应的元素。因此,这一类方法主要适用于语义空间。

基于实例的方法

基于实例的方法旨在首先获得不可见类的标记实例,然后使用这些实例来训练零样本分类器。根据这些实例的来源,现有的基于实例的方法可以分为三个子类:

①投影方法

投影方法的思想是通过将特征空间实例和语义空间原型投影到共享空间中来获得不可见类的标记实例。

在属于可见类的特征空间中有标记的训练实例。同时,在语义空间中存在可见类和不可见类的原型。特征和语义空间是实数空间,实例和原型是其中的向量。从这个角度来看,原型也可以被视为带标签的实例。因此,我们在特征空间和语义空间中标记了实例。

②实例借用方法

这些方法通过从训练实例中借用来处理为不可见类获取标记实例。实例借用方法基于类之间的相似性。有了这些相似类的知识,就可以识别属于未见类的实例。

③合成方法

合成方法是通过使用不同的策略合成伪实例来获得不可见类的标记实例。为了合成伪实例,假定每个类的实例遵循某种分布。首先,需要估计不可见类的分布参数。然后,合成不可见类的实例。

零样本学习的局限

与其他概念一样,零样本学习也有其局限性。以下是在实践中应用零样本学习面临的一些最常见的挑战。

1.偏差

在训练阶段,模型只能访问可见类的数据和标签。这会使模型将测试期间不可见类的数据样本预测为可见类。如果在测试期间,模型对来自可见和不可见类的样本进行评估,则偏差问题会变得更加突出。

2.领域转移

零样本学习模型的开发主要是为了在这些数据逐渐可用时将预训练模型扩展到新类。因此,领域转移问题在零样本学习中很常见。当训练集和测试集中数据的统计分布明显不同时,会发生领域转移。

3.中心问题

中心问题与最近邻搜索相关的维数灾难有关。在零样本学习中,中心问题的发生有两个原因。

输入和语义特征都存在于高维空间中。当这样一个高维向量被投影到一个低维空间时,方差会减少,导致映射点被聚类为一个中心。

在零样本学习中广泛使用的岭回归会引发中心问题。它会导致预测出现偏差,即无论如何查询,大部分都只预测了几个类。

4.信息损失

在对可见类进行训练时,模型仅学习用于区分这些可见类的重要属性。而一些潜在信息可能存在于可见类中,如果它们对决策过程没有重大贡献,则不会被学习到。但是,此信息在不可见类的测试阶段很重要。这就会导致信息损失。

以上就是解析零样本学习(ZSL)的定义与意义的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/435703.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月7日 16:03:34
下一篇 2025年11月7日 16:04:03

相关推荐

  • 如何部署一个机器学习模型到生产环境?

    部署机器学习模型需先序列化存储模型,再通过API服务暴露预测接口,接着容器化应用并部署至云平台或服务器,同时建立监控、日志和CI/CD体系,确保模型可扩展、可观测且可持续更新。 部署机器学习模型到生产环境,简单来说,就是让你的模型真正开始“干活”,为实际用户提供预测或决策支持。这并非只是把模型文件复…

    2025年12月14日
    000
  • 如何使用Python进行机器学习(Scikit-learn基础)?

    答案:Scikit-learn提供系统化机器学习流程,涵盖数据预处理、模型选择与评估。具体包括使用StandardScaler等工具进行特征缩放,SimpleImputer处理缺失值,OneHotEncoder编码类别特征,SelectKBest实现特征选择;根据问题类型选择分类、回归或聚类模型,结…

    2025年12月14日
    000
  • Python中如何使用sklearn进行机器学习?

    使用sklearn进行机器学习的步骤包括:1. 数据预处理,如标准化和处理缺失值;2. 模型选择和训练,使用决策树、随机森林等算法;3. 模型评估和调参,利用交叉验证和网格搜索;4. 处理类别不平衡问题。sklearn提供了从数据预处理到模型评估的全套工具,帮助用户高效地进行机器学习任务。 在Pyt…

    2025年12月14日
    000
  • 如何在Python中利用机器学习算法进行数据挖掘和预测

    如何在Python中利用机器学习算法进行数据挖掘和预测 引言随着大数据时代的到来,数据挖掘和预测成为了数据科学研究的重要组成部分。而Python作为一种简洁优雅的编程语言,拥有强大的数据处理和机器学习库,成为了数据挖掘和预测的首选工具。本文将介绍如何在Python中利用机器学习算法进行数据挖掘和预测…

    2025年12月13日
    000
  • 机器学习中的Python问题及解决策略

    机器学习是当前最热门的技术领域之一,而Python作为一种简洁、灵活、易于学习的编程语言,成为了机器学习领域最受欢迎的工具之一。然而,在机器学习中使用Python过程中,总会遇到一些问题和挑战。本文将介绍一些常见的机器学习中使用Python的问题,并提供一些解决策略和具体的代码示例。 Python版…

    2025年12月13日
    000
  • Python是机器学习的最佳选择吗?

    “哪种编程语言最好?”这是编程世界中最流行和最有争议的问题。这个问题的答案不是线性的或简单的,因为从技术上讲,每种编程语言都有自己的优点和缺点。不存在“最好”的编程语言,因为根据问题的不同,每种语言都比其他语言具有轻微的优势。当我们谈论机器学习时,毫无疑问Python是一种高度首选的语言,但有一些因…

    2025年12月13日
    000
  • PHP机器学习:PHP-ML基础

    php-ml是适用于php环境的机器学习库。1.它提供分类、回归、聚类等算法;2.通过composer安装使用;3.适合中小型项目,性能不及python但无需额外扩展;4.常用算法包括朴素贝叶斯、svm、knn等,选择需根据问题类型和数据特征决定;5.支持数据预处理与特征工程如标准化、缺失值处理、文…

    2025年12月10日 好文分享
    000
  • PHP 函数设计模式在机器学习中的应用

    函数设计模式在机器学习中通过工厂模式创建模型对象,建造者模式构建训练数据集,以及策略模式切换算法,实现可重用、可扩展和易维护的机器学习管道。 PHP 函数设计模式在机器学习中的应用 函数设计模式是一种设计原则,用于提高代码的可重用性和可维护性。在机器学习中,函数设计模式可以帮助我们创建灵活、可扩展的…

    2025年12月9日
    100
  • PHP函数在机器学习中的关键作用

    php在机器学习中扮演着关键角色,提供以下函数:线性回归:stats_regression_linear()聚类:kmeans()分类:svm_train() 和 svm_predict() PHP函数在机器学习中的关键作用 引言 PHP是一种通用脚本语言,在构建网站和应用程序时得到广泛使用。近年来…

    2025年12月9日
    000
  • PHP 函数如何扩展到机器学习?

    使用 phpml 库扩展 php 函数以利用机器学习技术:安装和加载 phpml 库。使用 k-近邻算法进行图像识别等实战应用。phpml 提供其他机器学习算法,如回归、分类和聚类。通过学习使用 phpml,开发者可以在 php 项目中轻松应用机器学习技术。 PHP 函数扩展到机器学习 随着机器学习…

    2025年12月9日
    000
  • 人工智能如何将数据中心转变为可持续性的动力

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 数据中心历来是许多技术进步的支柱,现在面临的不仅仅是基础设施提供商的问题。人工智能的快速发展凸显了数据中心迫切需要更加敏捷、创新和协作,为这个新时代提供动力。 人工智能和机器学习的蓬勃发展,加上…

    2025年12月2日 科技
    000
  • 如何通过人工智能(AI)和机器学习应对零售劳动力和执行方面的挑战

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 斑马技术大中华区技术总监 程宁 面对不断增长的需求,零售团队人员数量及具体运营执行是否能及时匹%ignore_a_1%,正成为零售商们不得不面临的挑战。零售团队人员的短缺将使商店难以正常运营。当…

    2025年12月2日
    000
  • 用于数据增强的十个Python库

    数据增强是人工智能和机器学习领域的一项关键技术。它涉及到创建现有数据集的变体,提高模型性能和泛化。python是一种流行的ai和ml语言,它提供了几个强大的数据增强库。在本文中,我们将介绍数据增强的十个python库,并为每个库提供代码片段和解释。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索…

    2025年12月1日 科技
    000
  • 机器学习算法中的特征筛选问题

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 机器学习算法中的特征筛选问题 在机器学习领域中,特征筛选是一个非常重要的问题,它的目标是从大量的特征中选择出对预测任务最有用的特征。通过特征筛选可以降低维度,减少计算复杂度,提高模型的准确性和解…

    2025年12月1日 科技
    000
  • 解决不均衡数据集的分类方法有哪些?

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 在机器学习领域,不平衡数据集是一种常见问题,指的是训练数据集中不同类别的样本数量差异很大。例如,在二分类问题中,正样本数量远远小于负样本数量。这会导致训练出的模型更倾向于预测数量更多的类别,而忽…

    2025年12月1日 科技
    000
  • 零知识机器学习:应用与发展潜力

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 零知识机器学习(Zero-Knowledge Machine Learning,ZKML)是一种新兴的机器学习技术,旨在在保护数据隐私的同时实现机器学习任务。它的潜力在于解决当前机器学习中普遍存…

    2025年12月1日 科技
    000
  • 了解自动编码器的训练方法:从架构探究开始

    噪声数据是机器学习中常见的问题之一,自动编码器是解决这类问题的有效方法。本文将介绍自动编码器的结构和正确训练方法。 自动编码器是一种无监督学习的人工神经网络,用于学习数据的编码。其目标是通过训练网络来捕捉输入图像的关键特征,并将其转化为低维表示,常用于降维处理。 自动编码器的架构 自动编码器由3部分…

    2025年12月1日 科技
    000
  • 零基础图像识别的学习方法

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 基于零次学习的图像识别是一种新兴的技术,它与传统的图像识别方法不同。传统的图像识别需要通过训练数据来学习特征和分类规则,而零次学习则不需要预先训练模型。它是根据待识别图像的特征进行实时分类,从而…

    2025年12月1日 科技
    000
  • 手写识别技术及其算法分类

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 机器学习技术的进步必定推动手写识别技术的发展。本文将重点介绍目前表现优异的手写识别技术和算法。 matlab基础知识简介 中文WORD版 MATLAB(矩阵实验室)是MATrix LABorat…

    2025年12月1日 科技
    000
  • 拥抱未来:塑造 2024 年的顶尖技术

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 在充满活力的技术创新领域,每一年都会带来一系列进步,重新定义我们的生活、工作以及与周围世界互动的方式。 步入 2024 年,大量突破性技术有望彻底改变我们生活的各个方面,从医疗保健、交通到通信和…

    2025年12月1日 科技
    000

发表回复

登录后才能评论
关注微信