综述深度聚类及相关算法

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

深度聚类及算法综述

深度聚类是一种结合了深度学习模型和聚类算法的方法,用于自动地从数据中学习特征并将数据分组成具有相似特征的类别。相较于传统的聚类算法,深度聚类能够有效处理高维度、非线性和复杂的数据,并具有更好的表现力和精度。通过深度学习模型,深度聚类可以学习到数据的抽象表示,从而更好地捕捉数据的内在结构和相似性。这种方法的优势在于能够自动地学习到数据的特征,而无需手动定义特征,从而减少了人为因素的干扰。深度聚类在许多领域都有广泛的应用,如计算机视觉、自然语言处理和推荐系统等。

深度聚类的核心思想是利用深度学习模型将数据降维到低维度表示,并在低维空间中进行聚类。主要步骤包括数据预处理、搭建深度学习模型、训练模型获取低维表示和应用聚类算法进行聚类。

1)建立深度学习模型:选择适合问题的深度学习模型,如自编码器、变分自编码器、生成对抗网络等。

2)特征提取:利用深度学习模型从原始数据中提取特征,将高维度数据降维到低维度表示。

3)聚类分析:在低维度空间中进行聚类分析,将数据分组成具有相似特征的类别。

4)反向传播:根据聚类结果,利用反向传播算法更新深度学习模型,以提高聚类精度。

二、深度聚类算法

1)自编码器聚类

自编码器聚类是一种基于深度学习的无监督聚类算法,它通过学习数据的低维表示来实现聚类。自编码器聚类的基本思想是:将高维度的输入数据通过编码器映射到低维空间,再通过解码器将低维度的数据重构回原始数据。该算法的步骤如下:

1.定义自编码器的结构,包括编码器和解码器,其中编码器将输入数据映射到低维空间,解码器将低维度的数据重构回原始数据。

2.使用无监督学习算法对自编码器进行训练,目标是最小化重构误差,即在原始数据和重构数据之间的差异。

3.使用编码器将原始数据映射到低维空间,并使用聚类算法对低维度的数据进行聚类,得到最终的聚类结果。

2)深度嵌入聚类

深度嵌入聚类是一种基于深度学习的无监督聚类算法,它通过学习数据的嵌入表示来实现聚类。深度嵌入聚类的基本思想是:通过多层非线性变换将原始数据映射到低维度的嵌入空间,并使用聚类算法对嵌入空间中的数据进行聚类。该算法的步骤如下:

1.定义深度嵌入网络的结构,包括多个非线性变换层和一个嵌入层,其中非线性变换层通过学习将原始数据映射到低维度的嵌入空间,嵌入层用于对嵌入空间中的数据进行聚类。

2.使用无监督学习算法对深度嵌入网络进行训练,目标是最小化嵌入空间中的数据点之间的距离,同时使不同聚类之间的距离尽可能大。

3.使用嵌入层将原始数据映射到低维度的嵌入空间,并使用聚类算法对嵌入空间中的数据进行聚类,得到最终的聚类结果。

3)谱聚类

谱聚类是一种基于图论的聚类算法,它将数据点看作图中的节点,将它们之间的相似度看作图中的边权,然后使用谱分解对图进行划分。谱聚类的基本思想是:将数据点映射到低维度的特征空间中,在特征空间中对数据点进行聚类。该算法的步骤如下:

1.构建数据点之间的相似度矩阵,常用的相似度度量包括欧几里得距离、余弦相似度等。

2.构建拉普拉斯矩阵,包括度矩阵和邻接矩阵的差。

3.对拉普拉斯矩阵进行谱分解,得到特征向量和特征值。

4.选择前k个特征向量,将数据点投影到低维度的特征空间中。

5.使用聚类算法对特征空间中的数据点进行聚类,得到最终的聚类结果。

4)层次聚类

层次聚类是一种基于树状结构的聚类算法,它将数据点逐层地划分为不同的聚类簇。层次聚类的基本思想是:将每个数据点看作一个初始聚类,然后不断将相似度最高的聚类合并,直到最终得到一个大的聚类簇或者指定的聚类簇数目。层次聚类的步骤如下:

1.计算数据点之间的相似度矩阵,常用的相似度度量包括欧几里得距离、余弦相似度等。

2.将每个数据点看作一个初始聚类。

3.计算每个聚类之间的相似度,常用的相似度度量包括单链接、完全链接、平均链接等。

4.不断地将相似度最高的聚类合并,直到最终得到一个大的聚类簇或者指定的聚类簇数目。

算家云 算家云

高效、便捷的人工智能算力服务平台

算家云 37 查看详情 算家云

5)生成对抗网络聚类

生成对抗网络聚类是一种基于生成对抗网络(GAN)的聚类算法,它通过生成器和判别器的对抗学习来实现聚类。生成对抗网络聚类的基本思想是:将数据点看作生成器的输入,通过生成器生成低维度的嵌入向量,并使用判别器对嵌入向量进行聚类。该算法的步骤如下:

1.定义生成器和判别器的结构,其中生成器将高维度的输入数据映射到低维度的嵌入向量,判别器用于对嵌入向量进行聚类。

2.使用无监督学习算法对生成器和判别器进行训练,目标是使生成器生成的嵌入向量尽可能接近真实的低维度向量,并使判别器能够准确地对嵌入向量进行聚类。

3.使用生成器将原始数据映射到低维度的嵌入空间,并使用聚类算法对嵌入空间中的数据进行聚类,得到最终的聚类结果。

6)深度聚类网络

深度聚类网络是一种基于深度学习的无监督聚类算法,它通过联合训练编码器和聚类器来实现聚类。深度聚类网络的基本思想是:将原始数据经过编码器编码到低维度的嵌入空间中,然后使用聚类器对嵌入空间中的数据进行聚类。该算法的步骤如下:

1.定义深度聚类网络的结构,包括编码器和聚类器,其中编码器将原始数据映射到低维度的嵌入空间,聚类器用于对嵌入空间中的数据进行聚类。

2.使用无监督学习算法对深度聚类网络进行联合训练,目标是最小化嵌入空间中的数据点之间的距离,同时最小化聚类器的聚类误差。

3.使用编码器将原始数据映射到低维度的嵌入空间,并使用聚类器对嵌入空间中的数据进行聚类,得到最终的聚类结果。

7)深度集成聚类

深度集成聚类是一种基于深度学习和集成学习的聚类算法,它通过将多个聚类模型进行集成来提高聚类的准确性。深度集成聚类的基本思想是:通过训练多个深度聚类模型,然后将它们的聚类结果进行集成,得到更加鲁棒和准确的聚类结果。该算法的步骤如下:

1.定义多个深度聚类模型的结构和超参数,包括编码器、聚类器、优化器等。

2.使用有监督或无监督学习算法对多个深度聚类模型进行训练,目标是最小化聚类误差。

3.将多个深度聚类模型的聚类结果进行集成,常用的集成方法包括投票法、加权平均法、聚合法等。

4.对集成后的聚类结果进行评估和分析,选择最优的聚类结果作为最终结果。

8)自适应聚类网络

自适应聚类网络是一种基于深度学习和自适应学习的聚类算法,它通过不断调整聚类器的参数来适应数据分布的变化和聚类结构的变化。自适应聚类网络的基本思想是:通过训练聚类器来适应数据分布的变化,同时根据聚类结构的变化自适应调整聚类器的参数。该算法的步骤如下:

1.定义自适应聚类网络的结构,包括编码器、聚类器、自适应调整模块等。

2.使用无监督学习算法对自适应聚类网络进行训练,目标是最小化聚类误差,并通过自适应调整模块不断调整聚类器的参数。

3.在实际应用中,自适应聚类网络不断接收新的数据,并根据数据分布和聚类结构的变化自适应调整聚类器的参数,从而实现自适应聚类。

9)基于密度的深度聚类

基于密度的深度聚类是一种基于密度的聚类算法,它通过计算数据点的密度来实现聚类。基于密度的深度聚类的基本思想是:将数据点看作密度分布的样本点,通过计算样本点之间的距离和密度来实现聚类。该算法的步骤如下:

1.计算每个数据点的密度和局部密度。

2.选择一个密度阈值,将密度低于阈值的数据点作为噪声点。

3.选择一个邻域半径,将密度高于阈值的数据点看作核心点,并将距离核心点在邻域内的数据点看作直接密度可达点。

4.将直接密度可达点连接起来,形成聚类簇,并将剩余的密度可达点划分到相应的聚类簇中。

5.将噪声点排除在聚类之外。

以上是一些常见的深度聚类算法及其基本思想和步骤,它们都具有不同的特点和适用范围,可以根据实际情况选择合适的算法进行聚类分析。

以上就是综述深度聚类及相关算法的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/436493.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月7日 16:27:57
下一篇 2025年11月7日 16:33:29

相关推荐

  • 图像重复检测:从感知哈希(pHash)开始构建

    本文旨在为希望在缺乏现有库支持的情况下,构建图片重复检测功能的开发者提供一个起点。我们将深入探讨感知哈希(pHash)这一核心技术,详细阐述其工作原理、实现步骤,并提供概念性的代码示例,以帮助读者理解如何生成图像指纹并进行相似度比较,从而有效识别近似重复的图片。 1. 感知哈希(pHash)概述 在…

    2025年12月15日
    000
  • 如何使用Python Flashtext模块?

    Flashtext是一款高效Python模块,利用Trie树结构实现快速关键词提取与替换,支持批量添加、不区分大小写模式,适用于日志处理、敏感词过滤等场景,性能优于正则表达式。 Flashtext 是一个高效的 Python 模块,用于在文本中快速提取关键词或替换多个关键词。相比正则表达式,它在处理…

    2025年12月15日
    000
  • TensorFlow 与 PyTorch 环境搭建常见问题

    先确认显卡驱动支持的CUDA版本,再通过conda或pip安装匹配的框架和cudatoolkit;使用独立虚拟环境避免依赖冲突,确保PyTorch/TensorFlow的CUDA版本与系统一致,可解决GPU无法调用、导入报错等问题。 搭建 TensorFlow 或 PyTorch 深度学习环境时,常…

    2025年12月14日
    000
  • python中RNN和LSTM的基本介绍

    RNN通过隐藏状态传递时序信息,但难以捕捉长期依赖;LSTM引入遗忘门、输入门和输出门机制,有效解决梯度消失问题,提升对长距离依赖的学习能力,适用于语言建模、翻译等序列任务。 在处理序列数据时,比如时间序列、文本或语音,传统的神经网络难以捕捉数据中的时序依赖关系。RNN(循环神经网络)和LSTM(长…

    2025年12月14日
    000
  • Python中PIL库有何用法?

    PIL通过Pillow实现图像打开、显示、保存,支持裁剪、缩放、模式转换、绘图等操作,适用于图像处理与数据预处理。 PIL(Python Imaging Library)是一个用于处理图像的库,现在主要通过其活跃的分支Pillow来使用。它支持多种图像格式,能进行图像打开、修改、保存等操作,是Pyt…

    2025年12月14日
    000
  • PyTorch中VGG-19模型的微调策略:全层与特定全连接层更新实践

    本文详细介绍了在pytorch中对预训练vgg-19模型进行微调的两种核心策略:一是更新模型所有层的权重以适应新任务;二是通过冻结大部分层,仅微调vgg-19分类器中的特定全连接层(fc1和fc2)。文章将通过示例代码演示如何精确控制参数的梯度计算,并强调根据新数据集的类别数量调整最终输出层的重要性…

    2025年12月14日
    000
  • KerasTuner超参数调优中集成自定义指标(F1、AUC等)的实践指南

    本文旨在解决kerastuner在使用f1分数、auc等非默认指标作为超参数调优目标时遇到的`keyerror`问题。核心在于理解kerastuner如何识别并记录指标,并提供一套实用的方法,指导用户正确地在keras模型中编译这些指标,并以kerastuner期望的命名格式(如`val_f1_sc…

    2025年12月14日
    000
  • ChromaDB向量嵌入的有效持久化策略

    本文详细介绍了如何利用langchain中chromadb的`persist_directory`功能,高效地持久化存储向量嵌入。通过将生成的嵌入数据保存到本地磁盘,可以有效避免重复计算,显著提升工作流程效率。教程将涵盖持久化chromadb实例的创建与后续加载的完整过程。 在处理大规模文本数据并生…

    2025年12月14日
    000
  • python中OpenCV的人脸检测功能

    OpenCV提供基于Haar级联和DNN模型的人脸检测功能,首先安装opencv-python库,使用Haar级联需加载haarcascade_frontalface_default.xml模型,将图像转为灰度图后调用detectMultiScale检测人脸并绘制矩形框;对于复杂场景推荐使用DNN模…

    2025年12月14日
    000
  • 解决TensorFlow数据集加载网络问题:本地化.npz数据加载教程

    本教程旨在解决tensorflow用户在使用`tf.keras.datasets`加载数据集时遇到的网络连接问题。当默认的下载机制因网络限制而失败时,本文将详细指导如何手动下载`.npz`格式的数据集,并利用numpy库将其高效、准确地加载到tensorflow项目中,确保训练数据的本地可用性,从而…

    2025年12月14日
    000
  • PyTorch VGG-19 模型微调指南:全层与特定全连接层优化策略

    本教程详细介绍了在 pytorch 中对预训练 vgg-19 模型进行微调的两种核心策略。我们将探讨如何实现全网络层的微调,以及如何选择性地仅微调其最后两个全连接层(fc1、fc2)及最终分类层。文章提供了具体的代码示例,演示了如何加载模型、冻结或解冻参数,并根据自定义数据集替换输出层,旨在帮助读者…

    2025年12月14日
    000
  • Keras二分类器预测单一类别的调试与优化指南

    本文旨在解决keras二分类器始终预测单一类别的问题,即使在数据集类别平衡的情况下。我们将从数据准备、模型构建与训练入手,深入分析导致该问题的潜在原因,并提供一系列诊断与优化策略,包括进行充分的探索性数据分析(eda)、优先尝试传统统计模型、精炼特征工程,以及审视数据本身的内在关联性,以帮助开发者构…

    2025年12月14日
    000
  • 深入理解TensorFlow Keras图像数据增强的随机性与模型训练

    本文深入探讨了tensorflow keras中图像数据增强的工作机制,特别关注增强操作的随机性如何影响模型在训练过程中对原始图像的感知。我们将解释数据增强是动态且随机应用于每个批次,这意味着模型通常会看到原始图像的多种变体,而非固定不变的原始图像,并讨论这对于模型泛化能力的重要性。 图像数据增强的…

    2025年12月14日
    000
  • TensorFlow图像增强机制:模型对原始图像的“可见性”深度解析

    tensorflow的图像增强层在训练过程中对每个批次的图像随机应用转换,这意味着模型主要学习的是原始图像的多种变体。尽管从统计学上讲,模型在训练期间偶然看到未增强的原始图像并非完全不可能,但增强的核心目的是通过引入多样性来提升模型的泛化能力和鲁棒性,而非保证原始图像的直接可见性。 引言:图像增强的…

    2025年12月14日
    000
  • Keras二分类模型预测单一类别问题分析与解决策略

    本文旨在解决keras二分类模型在平衡数据集上始终预测单一类别的问题。文章深入分析了数据中可能缺乏底层相关性、特征复杂性以及模型选择不当等潜在原因。我们提供了一套全面的解决策略,包括强化探索性数据分析(eda)、优先尝试传统统计模型以验证特征有效性、精细化特征工程,以及在数据理解基础上优化深度学习模…

    2025年12月14日
    000
  • TensorFlow图像数据增强机制解析:随机性、模型训练与最佳实践

    本文深入探讨TensorFlow中图像数据增强的工作机制。重点阐述数据增强层如何通过对每个训练批次随机应用变换,生成图像的多种变体,从而提高模型的泛化能力。我们将解析模型在训练过程中看到图像的实际情况,并提供代码示例与使用建议,帮助读者更好地理解和应用数据增强技术。 引言:数据增强的重要性 在深度学…

    2025年12月14日
    000
  • TensorFlow图像数据增强机制解析:理解随机性与模型泛化

    本文深入探讨TensorFlow中图像数据增强的工作机制,重点解析其随机性对模型训练的影响。我们将阐明模型在训练过程中如何通过随机变换看到原始图像的多种变体,以及这种机制如何提升模型的泛化能力。文章将包含示例代码,并提供关键注意事项,以帮助读者更好地应用数据增强技术。 引言:数据增强的必要性 在深度…

    2025年12月14日
    000
  • TensorFlow图像数据增强机制解析与实践

    本文深入探讨了tensorflow中图像数据增强的工作原理,特别是当模型在训练过程中是否会看到原始(未增强)图像的问题。我们解释了数据增强层如何随机应用于每个训练批次,使得模型主要学习图像的多种变体,从而提高泛化能力并有效防止过拟合。 引言:数据增强的必要性 在深度学习领域,尤其是计算机视觉任务中,…

    2025年12月14日
    000
  • Keras二分类模型预测单一类别问题:诊断与优化策略

    当keras二分类模型始终预测单一类别时,这通常不是模型本身的问题,而是数据与特征工程不足的表现。本文将深入探讨导致模型预测偏斜的潜在原因,并提供一套系统的诊断与优化策略,包括强化探索性数据分析、优先尝试传统机器学习模型、精细化特征工程,以及审慎评估数据与任务的相关性,以帮助开发者构建更鲁棒、更有效…

    2025年12月14日
    000
  • TensorFlow项目本地加载.npz数据集:解决网络下载问题的实践教程

    本教程旨在解决tensorflow在加载如mnist等数据集时,因网络连接问题导致`tf.keras.datasets.load_data()`函数失败的困境。我们将详细指导如何手动下载`.npz`格式的数据集文件,并利用`numpy`库将其高效、准确地加载到tensorflow项目中,确保训练数据…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信