薛定谔桥助力,清华朱军团队开发新型语音合成系统应对扩散挑战

近日,由清华大学计算机系朱军教授课题组发布的基于薛定谔桥的语音合成系统 [1],凭借其 「数据到数据」的生成范式,在样本质量和采样速度两方面,均击败了扩散模型的 「噪声到数据」范式。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

论文链接:https://arxiv.org/abs/2312.03491
项目网站:https://bridge-tts.github.io/ 
代码实现:https://github.com/thu-ml/Bridge-TTS

问题背景
自 2021 年起,扩散模型(diffusion models)开始成为文本到语音合成(text-to-speech, TTS)领域的核心生成方法之一,如华为诺亚方舟实验室提出的 Grad-TTS [2]、浙江大学提出的 DiffSinger [3] 等方法均实现了较高的生成质量。此后,又有众多研究工作有效提升了扩散模型的采样速度,如通过先验优化 [2,3,4]、模型蒸馏 [5,6]、残差预测 [7] 等方法。然而,如此项研究所示,由于扩散模型受限于「噪声到数据」的生成范式,其先验分布对生成目标提供的信息始终较为有限,对条件信息无法利用充分。

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

本次语音合成领域的最新研究工作,Bridge-TTS,凭借其基于薛定谔桥的生成框架,实现了「数据到数据」的生成过程,首次将语音合成的先验信息由噪声修改为干净数据由分布修改为确定性表征
该方法的主要架构如上图所示,输入文本首先经由文本编码器提取出生成目标(mel-spectrogram, 梅尔谱)的隐空间表征。此后,与扩散模型将此信息并入噪声分布或用作条件信息不同,Bridge-TTS 的方法‍支持直接将其作为先验信息,并支持通过随机或确定性采样的方式,高质量、快速地生成目标。

工作成果
在验证语音合成质量的标准数据集 LJ-Speech 上,研究团队将 Bridge-TTS 与 9 项高质量的语音合成系统和扩散模型的加速采样方法进行了对比。如下所示,该方法在样本质量上(1000 步、50 步采样)击败了基于扩散模型的高质量 TTS 系统 [2,3,7],并在采样速度上,在无需任何后处理如额外模型蒸馏的条件下,超过了众多加速方法,如残差预测、渐进式蒸馏、以及最新的一致性蒸馏等工作 [5,6,7]。
击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了
以下是 Bridge-TTS 与基于扩散模型方法的生成效果示例,更多生成样本对比可访问项目网站:https://bridge-tts.github.io/
1000 步合成效果对比
输入文本:「Printing, then, for our purpose, may be considered as the art of making books by means of movable types.」击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了
4 步合成效果对比
输入文本:「The first books were printed in black letter, i.e. the letter which was a Gothic development of the ancient Roman character,」击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了
 2 步合成效果对比
输入文本:「The prison population fluctuated a great deal,」击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了下面展示了 Bridge-TTS 一个在 2 步和 4 步的一个确定性合成(ODE sampling)案例。在 4 步合成中,该方法相较于扩散模型显著合成了更多样本细节,并没有噪声残留的问题。在 2 步合成中,该方法展示出了完全纯净的采样轨迹,并在每一步采样完善了更多的生成细节。
击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了
在频域中,更多的生成样本如下所示,在 1000 步合成中,该方法相较于扩散模型生成了更高质量的梅尔谱,当采样步数降到 50 步时,扩散模型已经牺牲了部分采样细节,而基于薛定谔桥的该方法仍然保持着高质量的生成效果。在 4 步和 2 步合成中,该方法不需蒸馏、多阶段训练、和对抗损失函数,仍然实现了高质量的生成效果。

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

在 1000 步合成中,Bridge-TTS与基于扩散模型的方法的梅尔谱对比

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

在 50 步合成中,Bridge-TTS与基于扩散模型的方法的梅尔谱对比

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

在 4 步合成中,Bridge-TTS与基于扩散模型的方法的梅尔谱对比
击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了
在 2 步合成中,Bridge-TTS与基于扩散模型的方法的梅尔谱对比

Bridge-TTS一经发布,凭借其在语音合成上新颖的设计与高质量的合成效果,在 Twitter 上引起了热烈关注,获得了百余次转发和数百次点赞,入选了 Huggingface 在 12.7 的 Daily Paper 并在当日获得了支持率第一名,同时在 LinkedIn、微博、知乎、小红书等多个国内外平台被关注与转发报道。

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

多个外文网站也进行了报道和讨论:

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

方法介绍
薛定谔桥(Schrodinger Bridge)是一类继扩散模型之后,近期新兴的深度生成模型,在图像生成、图像翻译等领域都有了初步应用 [8,9]。不同于扩散模型在数据和高斯噪声之间建立变换过程,薛定谔桥支持任意两个边界分布之间的转换。在 Bridge-TTS 的研究中,作者们提出了基于成对数据间薛定谔桥的语音合成框架,灵活支持着多种前向过程、预测目标、及采样过程。其方法概览如下图所示:

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

前向过程:此研究在强信息先验和生成目标之间搭建了一种完全可解的薛定谔桥,支持灵活的前向过程选择,如对称式噪声策略击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了、常数击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了,和非对称噪声策略: 图片、线性图片,以及直接与扩散模型相对应的方差保持(VP)噪声策略。该方法发现在语音合成任务中非对称噪声策略:即线性图片(gmax)和 VP 过程,相较于对称式噪声策略有更好的生成效果。

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

豆包大模型 豆包大模型

字节跳动自主研发的一系列大型语言模型

豆包大模型 834 查看详情 豆包大模型

模型训练:该方法保持了扩散模型训练过程的多个优点,如单阶段、单模型、和单损失函数等。并且其对比了多种模型参数化(Model parameterization)的方式,即网络训练目标的选择,包括噪声预测(Noise)、生成目标预测(Data)、和对应于扩散模型中流匹配技术 [10,11] 的速度预测(Velocity)等。文章发现以生成目标,即梅尔谱为网络预测目标时,可以取得相对更佳的生成效果。

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

采样过程:得益于该研究中薛定谔桥完全可解的形式,对薛定谔桥对应的前 – 后向 SDE 系统进行变换,作者们得到了 Bridge SDE 和 Bridge ODE 用于推断。同时,由于直接模拟 Bridge SDE/ODE 推断速度较慢,为加快采样,该研究借助了扩散模型中常用的指数积分器 [12,13],给出了薛定谔桥的一阶 SDE 与 ODE 采样形式:

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

在 1 步采样时,其一阶 SDE 与 ODE 的采样形式共同退化为网络的单步预测。同时,它们与后验采样 / 扩散模型 DDIM 采样有着密切联系,文章在附录中给出了详细分析。文章也同时给出了薛定谔桥的二阶采样 SDE 与 ODE 采样算法。作者发现,在语音合成中,其生成质量与一阶采样过程类似。
在其他任务如语音增强、语音分离、语音编辑等先验信息同样较强的任务中,作者们期待此研究也会带来较大的应用价值。
作者简介
此项研究有三位共同第一作者:陈泽华,何冠德,郑凯文,均属于清华大学计算机系朱军课题组,文章通讯作者为朱军教授,微软亚洲研究院首席研究经理谭旭为项目合作者。

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

                                                             朱军教授

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

                                                              微软亚洲研究院首席研究经理谭旭

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

陈泽华是清华大学计算机系水木学者博士后,主要研究方向为概率生成模型,及其在语音、音效、生物电信号合成等方面的应用。曾在微软、京东、TikTok 等多家公司实习,在语音和机器学习领域重要国际会议 ICML/NeurIPS/ICASSP 等发表多篇论文。

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

何冠德是清华大学在读的三年级硕士生,主要研究方向是不确定性估计与生成模型,此前在 ICLR 等会议以第一作者身份发表论文。

击败扩散模型,清华朱军团队基于薛定谔桥的新语音合成系统来了

郑凯文是清华大学在读的二年级硕士生,主要研究方向是深度生成模型的理论与算法,及其在图像、音频和 3D 生成中的应用。此前在 ICML/NeurIPS/CVPR 等顶级会议发表多篇论文,涉及了扩散模型中的流匹配和指数积分器等技术。
参考文献:
[1] Zehua Chen, Guande He, Kaiwen Zheng, Xu Tan, and Jun Zhu. Schrodinger Bridges Beat Diffusion Models on Text-to-Speech Synthesis. arXiv preprint arXiv:2312.03491, 2023.
[2] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail A. Kudinov. Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech. In ICML, 2021.
[3] Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism. In AAAI, 2022.
[4] Sang-gil Lee, Heeseung Kim, Chaehun Shin, Xu Tan, Chang Liu, Qi Meng, Tao Qin, Wei Chen, Sungroh Yoon, and Tie-Yan Liu. PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Dependent Adaptive Prior. In ICLR, 2022.
[5] Rongjie Huang, Zhou Zhao, Huadai Liu, Jinglin Liu, Chenye Cui, and Yi Ren. ProDiff: Progressive Fast Diffusion Model For High-Quality Text-to-Speech. In ACM Multimedia, 2022.
[6] Zhen Ye, Wei Xue, Xu Tan, Jie Chen, Qifeng Liu, and Yike Guo. CoMoSpeech: One-Step Speech and Singing Voice Synthesis via Consistency Model. In ACM Multimedia, 2023.
[7] Zehua Chen, Yihan Wu, Yichong Leng, Jiawei Chen, Haohe Liu, Xu Tan, Yang Cui, Ke Wang, Lei He, Sheng Zhao, Jiang Bian, and Danilo P. Mandic. ResGrad: Residual Denoising Diffusion Probabilistic Models for Text to Speech. arXiv preprint arXiv:2212.14518, 2022.
[8] Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion Schrödinger Bridge Matching. In NeurIPS 2023.
[9] Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A. Theodorou, Weili Nie, and Anima Anandkumar. I2SB: Image-to-Image Schrödinger Bridge. In ICML, 2023.
[10] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching for Generative Modeling. In ICLR, 2023.
[11] Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs. In ICML, 2023.
[12] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps. In NeurIPS, 2022.
[13] Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics. In NeurIPS, 2023.

以上就是薛定谔桥助力,清华朱军团队开发新型语音合成系统应对扩散挑战的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/448371.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月7日 21:51:50
下一篇 2025年11月7日 21:53:02

相关推荐

  • 如何用HTML插入标签云组件_HTML CSS3变换与随机颜色生成算法

    使用HTML构建标签结构,CSS3添加旋转与过渡效果,JavaScript生成随机HSL颜色并设置字体大小,实现动态交互的标签云组件。 要在网页中实现一个动态的标签云组件,结合 HTML、CSS3 变换和随机颜色生成算法,可以按照以下步骤操作。这个组件不仅能提升页面视觉效果,还能通过色彩和旋转增加交…

    2025年12月23日
    000
  • 如何在Go Gin应用中集成前端JavaScript模块(如Sentry)

    本文探讨了在Go Gin框架下,通过HTML模板服务前端页面时,如何有效集成JavaScript模块(如Sentry)。针对浏览器不直接支持Node.js模块导入语法的问题,文章详细阐述了利用CDN引入Sentry SDK的解决方案,并提供了具体的代码示例,帮助开发者实现前端错误监控功能,避免了复杂…

    2025年12月23日
    000
  • html官网浏览入口_html网站设计免费平台

    html官网浏览入口在https://www.codepen.io,该平台支持实时预览代码、创建Pen项目、Fork开源示例,可添加外部资源,具备点赞评论收藏等社区互动功能,设有挑战活动与作品集分类,开放API接口,界面简洁适合初学者,在线编写无需配置环境,支持多种预处理器和响应式测试。 html官…

    2025年12月23日
    000
  • html如何修改日期样式

    在html中,可以使用“::-webkit-datetime-edit”伪元素选择器来修改日期格式,只需要用该选择器选中元素,在设置具体样式即可,具体语法为“::-webkit-datetime-edit{属性:属性值}”。 本教程操作环境:windows7系统、CSS3&&HTML…

    2025年12月21日
    100
  • 单选框的type属性值为什么

    单选框的type属性值为“radio”。html type属性可以规定要显示的输入框“”元素的类型;值为“radio”时显示为单选框、“checkbox”时显示为复选框、“select”时显示为下拉式选框等等。 本教程操作环境:windows7系统、HTML5版、Dell G3电脑。 在HTML中,…

    2025年12月21日
    000
  • HTML中type是什么意思

    在HTML中,type是类型的意思,是一个标签属性,主要用于定义标签元素的类型或文档(脚本)的MIME类型;例在input标签中type属性可以规定input元素的类型,在script标签中type属性可以规定脚本的MIME类型。 本教程操作环境:windows7系统、html5版、Dell G3电…

    2025年12月21日
    000
  • HTML中ul标签如何去掉点?HTML无序列表的样式实例解析

    本篇文章主要讲述的是关于html中的ul标签的默认小点给取消掉,还有关于html的无序列表ul标签的样式解释,给出了ul标签中的type属性三种值的介绍。现在就让我们一起来看本篇文章吧 首先这篇文章一开始我们就开始介绍在html中是怎么把ul标签的点给去掉的: 大家应该都使用过ul无序列表标签,ul…

    2025年12月21日 好文分享
    000
  • html中的ol标签如何去掉标号呢?标签的使用方法总结

    本篇文章介绍了html的ol标签是怎么去掉序号标号的,这里还有代码的详细解释,还有介绍了关于html ol有序列表标签如何更改序号,下文介绍了三种序号,大家也可以自己去想填写怎样的序号。现在来看这篇文章吧 一、我们先看看html中的ol标签是如何去掉标号的呢: 我们都知道html的ol标签是个有序列…

    2025年12月21日 好文分享
    000
  • HTML ul标签的什么意思?HTML ul标签的作用详解

    本篇文章主要的为大家讲解了关于html ul标签的三种重要的用法,还有关于html ul标签的解释,包含li标签的还有type属性对ul标签的使用情况,好了,下面大家一起来看文章吧 首先让我们先来解释一下HTML ul标签的意思: ul标签定义的是表格当中无序列表,表格当中的无序列表都是在 标签之中…

    2025年12月21日
    000
  • javascript框架和库是什么_如何选择React、Vue或Angular?

    JavaScript框架与库分别提供按需调用的功能集合和约束性开发结构;React是UI组件库,生态灵活但需自行整合工具;Vue渐进式易上手,兼顾原型与工程化;Angular是全功能TypeScript框架,适合强规范企业级项目。 JavaScript框架和库是封装好的代码集合,用来简化前端开发——…

    2025年12月21日
    000
  • React应用生产环境环境变量配置深度指南

    本文针对react应用在生产环境中无法读取`.env`文件配置的环境变量问题,深入剖析其工作原理、常见原因及排查方法。通过详细的步骤和示例代码,指导开发者正确配置和使用环境变量,解决api调用层面的`null`响应问题,确保应用在生产环境下的稳定运行。 在React应用开发中,环境变量(如API密钥…

    2025年12月21日
    000
  • JS注解怎么实现文档化_ JS注解生成开发文档的流程与工具

    JSDoc是一种JavaScript结构化注释规范,通过@param、@returns等标签描述代码元素,并借助工具生成HTML文档,结合IDE支持和CI/CD可提升团队协作效率。 JavaScript本身不支持原生注解(Annotation)像Java那样的语法,但通过约定的注释格式和配套工具,可…

    2025年12月21日
    000
  • JS注解怎么标注联合类型_ JS联合类型的注解书写与使用技巧

    在JavaScript中可通过JSDoc使用联合类型注解,如string|number表示多类型支持,结合@param、@typedef等标签提升代码可读性与编辑器提示,适用于函数参数、返回值等场景。 在JavaScript中,虽然原生不支持类型注解,但在使用JSDoc配合现代编辑器(如VS Cod…

    2025年12月21日
    000
  • VS Code主题开发:告别JSON,拥抱脚本化生成

    vs code主题扩展最终需json格式定义,但开发者可通过javascript或typescript等脚本语言生成此json文件。这种方法有效解决了大型json文件难以维护、不支持注释等问题,并能实现颜色动态计算,显著提升主题开发的灵活性与效率。 为什么选择脚本化生成VS Code主题? 在开发V…

    2025年12月20日
    000
  • 如何用Quasar框架开发一个跨平台应用?

    Quasar基于Vue.js用一套代码构建多平台应用,支持响应式网站、PWA、移动App和桌面应用。通过quasar create创建项目,利用模式(SPA、PWA、Electron等)切换目标平台,使用Quasar组件库编写通用UI,配合Pinia管理状态,最后通过不同构建命令发布到各平台,实现高…

    2025年12月20日
    000
  • 怎么利用JavaScript进行前端代码覆盖率统计?

    答案:利用JavaScript进行前端代码覆盖率统计的核心是通过Istanbul/nyc等工具对代码插桩,结合测试框架收集执行数据并生成报告。具体流程包括:在代码执行前通过Babel或Webpack插件(如babel-plugin-istanbul)插入计数器实现插桩;运行测试时记录哪些代码被执行;…

    2025年12月20日
    100
  • typescript中的参数分享

    TypeScript 中的参数共享允许组件间共享参数,实现跨组件状态维护和数据变更共享。通过 @Input 装饰器传递父组件参数,使用 @Output 装饰器定义子组件事件,以便在子组件状态改变时通知父组件。参数共享提高复用性,简化状态管理,允许子组件向父组件发出通知,但应谨慎使用,避免大量数据共享…

    2025年12月19日
    000
  • 手机如何运行typescript方法

    要在手机上运行 TypeScript 方法,可以使用 TypeScript 编译器或第三方库:TypeScript 编译器: 将 TypeScript 代码编译成 JavaScript,然后集成到移动应用程序中。第三方库: 如 React Native 或 NativeScript,允许使用 Typ…

    2025年12月19日
    000
  • typescript用来干嘛_typescript的作用

    TypeScript 是一种用于构建大型复杂应用程序的开源编程语言,它扩展了 JavaScript 的功能,具有以下作用:类型系统:编译时检查类型错误,提高代码可靠性。面向对象编程特性:支持类、接口、抽象类,增强代码组织性和维护性。模块系统:分解程序为可重用模块,提升可维护性和可扩展性。全面的类型推…

    2025年12月19日
    000
  • TypeScript基本用法和语法

    TypeScript 是一种具有类型系统的 JavaScript 超集,提供以下特性:类型注解:确保变量、函数和类的类型一致。接口:定义方法和属性,供类实现。枚举:提供命名常量集。泛型:创建可重用且类型安全的组件。 TypeScript 基本用法和语法 TypeScript 是一种超集 JavaSc…

    2025年12月19日
    000

发表回复

登录后才能评论
关注微信