深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽

在图像理解领域,多模态大模型已经充分展示了其卓越的性能。然而,对于工作中经常需要处理的图表理解与生成任务,现有的多模态模型仍有进步的空间。

尽管目前在图表理解领域中,最先进的模型在简单测试集上表现出色,但是由于它们缺乏语言理解和输出能力,因此无法胜任更为复杂的问答任务。另一方面,基于大语言模型训练的多模态大模型的表现也不尽如人意,主要是由于它们缺乏对图表的训练样本。这些问题严重制约了多模态模型在图表理解与生成任务上的持续进步

近期,腾讯联合南洋理工大学、东南大学提出了 ChartLlama。研究团队创建了一个高质量图表数据集,并训练了一个专注于图表理解和生成任务的多模态大型语言模型。ChartLlama 结合了语言处理与图表生成等多重性能,为科研工作者和相关专业人员提供了一个强大的研究工具。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽

论文地址:https://arxiv.org/abs/2311.16483

爱图表 爱图表

AI驱动的智能化图表创作平台

爱图表 99 查看详情 爱图表

主页地址:https://tingxueronghua.github.io/ChartLlama/

ChartLlama团队设计了一种巧妙的多元化数据收集策略,利用GPT-4生成具有特定主题、分布和趋势的数据,以确保数据集的多样性。该团队结合了开源的绘图库和GPT-4的编程能力,编写出精确的图表代码,以生成准确的图形化数据表示。此外,团队还使用GPT-4描述图表内容并生成问答对,为每个图表生成了丰富多样的训练样本,以确保经过训练的模型能够充分理解图表

深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽

在图表理解领域,传统模型只能完成一些简单的问题,如读取数字等简单的问答任务,无法回答较为复杂的问题。这些模型难以跟随较长的指令,同时在涉及数学运算的问答中,也常常出现运算错误。相比之下,ChartLlama 可以有效地避免这些问题,具体对比如下:

深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽

除了传统任务外,研究团队还定义了若干新任务,其中包括三个任务涉及到图表生成。该论文提供了相关示例:

深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽给定图表和指令,进行图表重建与图表编辑的示例

深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽

生成图表示例的过程是根据指令和原始数据进行的

ChartLlama 在各种基准数据集上表现出色,达到了最先进的水平,而且所需的训练数据量也较少。它采用了灵活的数据生成和收集方法,大大扩展了图表理解和生成任务中的图表类型和任务种类,为该领域的发展作出了推动

方法概述

ChartLlama 设计了一种灵活的数据收集方法,利用 GPT-4 的强大语言能力和编程能力,创建了丰富的多模态图表数据集。

深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽

ChartLlama 的数据收集包括三个主要阶段:

图表数据生成:ChartLlama 不仅从传统数据源收集数据,还利用 GPT-4 的能力产生合成数据。通过提供特定的特征,如主题、分布和趋势,从而引导 GPT-4 产生多样化和平衡的图表数据。由于生成的数据包含了已知的数据分布特性,这使得指令数据的构建更加灵活和多样。图表生成:接着,利用 GPT-4 强大的编程能力,使用开源库(如 Matplotlib)根据已生成的数据和函数文档来编写图表绘制脚本,生成了一系列精心渲染的图表。由于图表的绘制完全是基于开源工具,这种算法可以生成更多类型的图表用于训练。对比已有数据集,例如 ChatQA,只支持三种图表类型, ChartLlama 所构建的数据集支持多达 10 种图表类型,而且可以任意扩展。指令数据生成:除了图表渲染外,ChartLlama 还进一步利用 GPT-4 来描述图表内容,构造多种多样的问答数据,以确保训练过的模型能全面理解图表。这个全面的指令调整语料库,融合了叙述文本、问题 – 答案对以及图表的源代码或修改后的代码。过往的数据集只支持 1-3 种图表理解任务,而 ChartLlama 支持多达 10 种图表理解与生成任务,能够更好的帮助训练图文大模型理解图标中的信息

使用上述步骤,ChartLlama 已经建立了一个包含多种任务和多种图表类型的数据集。 不同类型的任务和图表在总数据集中所占的比例如下:

深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽

请参考论文原文以获取更详细的指令和说明

实验结果

无论是传统任务还是新的任务,ChartLlama 都展现了最优越的性能。传统任务包括图表问答、图表总结,以及图表的结构化数据提取。对比 ChartLlama 和此前最先进的模型,结果如下图所示:

深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽

研究人员还评估了ChartLlama独有的任务能力,包括生成图表代码、总结图表和编辑图表。他们还创建了相应任务的测试集,并与目前最强大的开源图文模型LLaVA-1.5进行了对比。以下是结果:

深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽

研究团队在各种不同类型的图表中测试了ChartLlama的问答准确率,并将其与之前的SOTA模型Unichart和提出的基线模型进行了比较,结果如下:

深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽

总的来说,ChartLlama 不仅推动了多模态学习的边界,也为图表的理解和生成提供了更精确和高效的工具。无论是在学术写作还是在企业演示中,ChartLlama 都将使图表的理解和创造变得更加直观和高效,在生成和解读复杂视觉数据方面迈出了重要的一步。

有兴趣的读者可以前往论文原文,以获取更多研究内容

以上就是深入理解图表:ChartLlama,腾讯、南洋理工等开源图表巨兽的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/453575.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 00:24:00
下一篇 2025年11月8日 00:25:21

相关推荐

  • HiDream-I1— 智象未来开源的文生图模型

    hidream-i1:一款强大的开源图像生成模型 HiDream-I1是由HiDream.ai团队开发的17亿参数开源图像生成模型,采用MIT许可证,在图像质量和对提示词的理解方面表现卓越。它支持多种风格,包括写实、卡通和艺术风格,广泛应用于艺术创作、商业设计、科研教育以及娱乐媒体等领域。 HiDr…

    2025年12月5日
    000
  • vivo Pad3 Pro 正式登场 跑分离谱还有蓝心大模型

    中关村在线消息:vivo 旗舰新品发布会正在进行中,本场发布会第一个登场的产品是 vivo pad3 pro。新款产品上来就放出王炸,搭载天玑 9300 处理器,跑分超过 210 万,也是行业首个突破 200 万的平板电脑。在游戏测试中,在 90 帧 +hdr 高清画质下,帧率稳定一条直线,性能十分…

    2025年12月5日
    000
  • 谷歌揭秘大模型不会数 r 原因:嵌入维度是关键,不止分词器问题

    大模型做奥赛题游刃有余,简单的数数却屡屡翻车的原因找到了。 谷歌的一项新研究,发现大模型不会数数的原因,并不是简单的 tokenizer 所致,而是没有足够的空间来存储用于计数的向量。 数出一段话中某个单词出现的次数,这样简单的任务可以难倒许多大模型,GPT-4o、Claude 3.5 也无法幸免。…

    2025年12月5日 硬件教程
    000
  • 显著超越 SFT,o1/DeepSeek-R1 背后秘诀也能用于多模态大模型了

    上海交大、上海ai lab和港中文大学的研究人员推出visual-rft(视觉强化微调)开源项目,该项目仅需少量数据即可显著提升视觉语言大模型(lvlm)性能。visual-rft巧妙地将deepseek-r1的基于规则奖励的强化学习方法与openai的强化微调(rft)范式相结合,成功地将这一方法…

    2025年12月3日 硬件教程
    000
  • AI 越聪明越不听话!新研究:最强推理模型指令遵循率仅 50%

    如果面前有两个 ai 助手:一个很聪明但经常不守规矩,另一个很听话但不太聪明,你会怎么选? 最近,上海人工智能实验室与香港中文大学的研究团队发布了论文《Scaling Reasoning, Losing Control: Evaluating Instruction Following in Lar…

    2025年12月3日 硬件教程
    100
  • RL 是推理神器?清华上交大最新研究指出:RL 让大模型更会“套公式”、却不会真推理

    清华和上交的最新论文中,上演了一场“学术打假”的戏码。文中研究者们对当前“纯 rl 有利于提升模型推理能力”的主流观点提出了相反的意见。 通过一系列实验,他们证明引入强化学习的模型在某些任务中的表现,竟然不如未使用强化学习的模型。 论文批判性地探讨了 RLVR 在提升 LLM 推理能力方面的作用,尤…

    2025年12月3日 科技
    100
  • 《梦幻西游》全新赛事祥瑞即将来袭,剪影图曝光

    《梦幻西游》电脑版全新赛事祥瑞曝光,11月将会和广大玩家正式亮相!你们猜猜这只祥瑞是以什么为原型做的设计,以及和梦幻接下来的什么活动有关 无涯·问知 无涯·问知,是一款基于星环大模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品 153 查看详情 以上就是《梦幻…

    2025年12月2日 行业动态
    000
  • 《梦幻西游》镇淮楼再掏出魔王九黎力普陀三攻,激战曲阜服战队!

    《梦幻西游》镇淮楼再掏出魔王九黎力普陀三攻,激战曲阜服战队! 无涯·问知 无涯·问知,是一款基于星环大模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品 153 查看详情 以上就是《梦幻西游》镇淮楼再掏出魔王九黎力普陀三攻,激战曲阜服战队!的详细内容,更多请关注…

    2025年12月2日
    000
  • 首届魔搭开发者大会举办,重磅发布开发者激励计划

    雷峰网讯 6 月 30 日,首届魔搭开发者大会在北京盛大召开。自 2022 年 11 月成立以来,经过两年多的快速发展,社区已聚集超过 500 家贡献机构,托管开源模型数量突破 7 万个,增长达 200 多倍;用户规模从 2023 年 4 月的 100 万迅速扩展至目前的 1600 万,增幅约 16…

    2025年12月2日
    000
  • 亚马逊发布 Bedrock,推出多项新功能,助力企业利用生成式AI技术

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 亚马逊网络服务公司近日在生态系统中推出了五款全新的生成式人工智能产品,这些产品将帮助企业客户利用自己的数据建立人工智能应用程序,并提供更好的安全性和模型的可及性。 这些新服务的包括全面推出的Am…

    2025年12月2日
    000
  • 探究词表选择对语言模型训练的影响:一项具有突破性的研究

    语言模型受不同词表的影响有哪些?如何平衡这些影响? 在最近的一项实验中,研究者对16个语言模型进行了不同的语料预训练和微调。这次实验使用了NanoGPT,一种小规模的架构(基于GPT-2 SMALL),共训练了12个模型。NanoGPT的网络架构配置为:12个注意力头、12层transformer,…

    2025年12月2日 科技
    000
  • ICCV’23论文颁奖“神仙打架”!Meta分割一切和ControlNet共同入选,还有一篇让评委们很惊讶

    在法国巴黎举行的计算机视觉顶峰大会iccv 2023刚刚结束! 今年的最佳论文奖,简直是“神仙打架”。 例如,获得最佳论文奖的两篇论文中,就包括颠覆文生图AI领域的著作——ControlNet。 自从开源以来,ControlNet在GitHub上已经获得了24k个星。无论是对于扩散模型还是整个计算机…

    2025年12月2日 科技
    000
  • 最多400万token上下文、推理提速22倍,StreamingLLM火了,已获GitHub 2.5K星

    如果你曾经与任何一款对话式 AI 机器人交流过,你一定会记得一些令人感到非常沮丧的时刻。比如,你在前一天的对话中提到的重要事项,被 AI 完全忘记了…… 这是因为当前的多数 LLM 只能记住有限的上下文,就像为考试而临时抱佛脚的学生,稍加盘问就会「露出马脚」。 如果AI助手能够在聊天中根据上下文参考…

    2025年12月2日 科技
    000
  • PyTorch+昇腾 共促AI生态创新发展

    2023年10月5日(北京时间),pyt%ignore_a_1%rch社区正式发布了2.1版本。经过pytorch社区与昇腾的持续合作和共同努力,pytorch 2.1版本已经同步支持昇腾npu。这意味着开发者可以直接在pytorch 2.1上进行基于昇腾的模型开发。未来,通过持续的社区技术贡献,昇…

    2025年12月2日 科技
    000
  • 选择最适合数据的嵌入模型:OpenAI 和开源多语言嵌入的对比测试

    openai最近宣布推出他们的最新一代嵌入模型embedding v3,他们声称这是性能最出色的嵌入模型,具备更高的多语言性能。这一批模型被划分为两种类型:规模较小的text-embeddings-3-small和更为强大、体积较大的text-embeddings-3-large。 ☞☞☞AI 智能…

    2025年12月2日 科技
    000
  • 谷歌10M上下文窗口正在杀死RAG?被Sora夺走风头的Gemini被低估了?

    要说最近最郁闷的公司,谷歌肯定算得上一个:自家的 Gemini 1.5 刚刚发布,就被 OpenAI 的 Sora 抢尽了风头,堪称 AI 界的「汪峰」。 具体来说,谷歌这次推出的是用于早期测试的 Gemini 1.5 的第一个版本 ——Gemini 1.5 Pro。它是一种中型多模态模型(涉及文本…

    2025年12月2日 科技
    000
  • 马斯克预测 Grok 5 实现通用人工智能概率 10%且还在上升

    近日,特斯拉与 spacex 首席执行官马斯克在社交平台上发表言论,预测其旗下人工智能公司 xai 正在研发的 grok 5 大型语言模型,有 10% 的可能性实现通用人工智能(agi),并指出这一概率正持续攀升。 上个月,马斯克就曾提出 xAI 或将通过 Grok 5 达成 AGI 的目标,此番言…

    2025年12月2日 科技
    000
  • java框架在开放源代码社区中的兴起趋势和影响有哪些?

    java 框架在开源社区中兴起,原因有:简化开发、提高可维护性、促进代码重用和快速原型化。这些框架对开源社区产生重大影响:创建了更为复杂的应用程序、降低了开发成本、促进了协作,推动了技术创新。比如使用 spring boot 框架构建简单 rest api。随着框架不断发展,预计它们将继续在 jav…

    2025年12月2日 java
    000
  • 如何快速部署DeepSeek| 腾讯云TI部署指南

    一、为什么选择deepseek与创想鸟hai的结合 近年来,随着大模型在多种应用场景中的快速发展,AI工程师们迫切需要一种能够快速、高效且成本低廉的方式来部署和管理模型服务。PHP中文网HAI(高性能AI)平台是一个专为高性能计算和深度学习设计的综合解决方案,提供GPU/CPU资源调度、自动化部署以…

    2025年12月2日 科技
    000
  • 腾讯云TI平台极速部署DeepSeek

    前言 DeepSeek的出现,彻底改变了传统的LLM模式,允许我们在本地电脑上部署类似于ChatGPT的大型语言模型,解决了网络和对话次数限制的问题。然而,如果希望随时随地使用DeepSeek云服务,可以考虑利用PHP中文网的HAI或TI平台。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, …

    2025年12月2日 科技
    000

发表回复

登录后才能评论
关注微信