常用的回归算法及其特点在机器学习中的应用

回归是统计学中最有力的工具之一,机器学习监督学习算法分为分类算法和回归算法两种。回归算法用于连续型分布预测,可以预测连续型数据而不仅仅是离散的类别标签。

回归分析在机器学习领域得到广泛应用,例如预测商品销量、交通流量、房价以及天气情况等

回归算法是一种常用的机器学习算法,用于建立自变量X和因变量Y之间的关系。从机器学习的角度来看,它用于构建一个算法模型(函数),以实现属性X和标签Y之间的映射关系。在学习过程中,该算法试图找到最佳的参数关系,以使拟合程度最好

在回归算法中,算法(函数)的最终结果是一个连续的数据值。输入值(属性值)是一个d维度的属性/数值向量

英特尔AI工具 英特尔AI工具

英特尔AI与机器学习解决方案

英特尔AI工具 70 查看详情 英特尔AI工具

一些常用的回归算法包括线性回归、多项式回归、决策树回归、Ridge回归、Lasso回归、ElasticNet回归等等

本文将介绍一些常见的回归算法,以及它们各自的特点

线性回归多项式回归支持向量机回归决策树回归随机森林回归LASSO 回归Ridge 回归ElasticNet 回归XGBoost 回归局部加权线性回归

一、线性回归

线性回归通常是人们学习机器学习和数据科学的第一个算法。线性回归是一种线性模型,它假设输入变量 (X) 和单个输出变量 (y) 之间存在线性关系。一般来说,有两种情况:

单变量线性回归是一种建模方法,用于分析单个输入变量(即单个特征变量)与单个输出变量之间的关系

多变量线性回归(也称为多元线性回归):它对多个输入变量(多个特征变量)和单个输出变量之间的关系进行建模。

关于线性回归的几个关键点:

快速且易于建模当要建模的关系不是非常复杂并且您没有大量数据时,它特别有用。非常直观的理解和解释。它对异常值非常敏感。

二、多项式回归

当我们想要为非线性可分数据创建模型时,多项式回归是最受欢迎的选择之一。它类似于线性回归,但使用变量 X 和 y 之间的关系来找到绘制适合数据点的曲线的最佳方法。

关于多项式回归的几个关键点:

能够对非线性可分数据进行建模;线性回归不能做到这一点。一般来说,它更加灵活,可以对一些相当复杂的关系进行建模。完全控制特征变量的建模(要设置的指数)。需要精心设计。需要一些数据知识才能选择最佳指数。如果指数选择不当,则容易过度拟合。

三、支持向量机回归

支持向量机在分类问题中是众所周知的。SVM 在回归中的使用称为支持向量回归(SVR)。Scikit-learn在 SVR()中内置了这种方法。

关于支持向量回归的几个关键点:

它对异常值具有鲁棒性,并且在高维空间中有效它具有出色的泛化能力(能够正确适应新的、以前看不见的数据)如果特征数量远大于样本数量,则容易过拟合

四、决策树回归

决策树是一种用于分类和回归的非参数监督学习方法。目标是创建一个模型,通过学习从数据特征推断出的简单决策规则来预测目标变量的值。一棵树可以看作是一个分段常数近似。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

常用的回归算法及其特点在机器学习中的应用

关于决策树的几个关键点:

易于理解和解释。树可以可视化。适用于分类值和连续值使用 DT(即预测数据)的成本与用于训练树的数据点数量成对数决策树的预测既不平滑也不连续(如上图所示为分段常数近似)

五、随机森林回归

随机森林回归与决策树回归基本上非常相似。它是一种元估计器,可以在数据集的各个子样本上拟合多个决策树,并通过平均来提高预测准确性和控制过拟合

随机森林回归器在回归问题中的表现可能会优于决策树,也可能不如决策树(尽管在分类问题中通常更好),这是由于树构造算法本身存在微妙的过拟合和欠拟合的权衡

关于随机森林回归的几点:

减少决策树中的过度拟合并提高准确性。它也适用于分类值和连续值。需要大量计算能力和资源,因为它适合许多决策树来组合它们的输出。

六、LASSO 回归

LASSO回归是一种变体的收缩线性回归。收缩是将数据值收缩到中心点作为平均值的过程。这种回归类型非常适用于具有严重多重共线性(特征之间高度相关)的模型

常用的回归算法及其特点在机器学习中的应用

关于 Lasso 回归的几点:

它最常用于消除自动变量和选择特征。它非常适合显示重度多重共线性(特征相互之间高度相关)的模型。LASSO 回归利用 L1 正则化LASSO 回归被认为比 Ridge 更好,因为它只选择了一些特征并将其他特征的系数降低到零。

七、岭回归

岭回归(Ridge regression)和LASSO回归非常相似,因为这两种技术都采用了收缩方法。Ridge和LASSO回归都非常适用于具有严重多重共线性问题(即特征之间高度相关)的模型。它们之间的主要区别在于Ridge使用L2正则化,这意味着没有一个系数会像LASSO回归中那样变为零(而是接近零)

常用的回归算法及其特点在机器学习中的应用

关于岭回归的几点:

它非常适合显示重度多重共线性(特征相互之间高度相关)的模型。岭回归使用 L2 正则化。贡献较小的特征将具有接近于零的系数。由于 L2 正则化的性质,岭回归被认为比 LASSO 更差。

八、ElasticNet 回归

ElasticNet 是另一个使用 L1 和 L2 正则化训练的线性回归模型。它是 Lasso 和 Ridge 回归技术的混合体,因此它也非常适合显示重度多重共线性(特征相互之间高度相关)的模型。

在权衡Lasso和Ridge之间时,一个实际的优势是Elastic-Net可以在旋转下继承Ridge的一些稳定性

九、XGBoost 回归

XGBoost 是梯度提升算法的一种高效且有效的实现。梯度提升是一类可用于分类或回归问题的集成机器学习算法

XGBoost是一个开源库,最初由陈天奇在他于2016年的论文《XGBoost: A Scalable Tree Boosting System》中开发。该算法的设计旨在具有高效和效率的计算能力

关于 XGBoost 的几点:

XGBoost 在稀疏和非结构化数据上表现不佳。该算法被设计为计算效率和高效,但是对于大型数据集的训练时间仍然相当长。它对异常值很敏感。

十、局部加权线性回归

在局部加权线性回归(Local Weights Linear Regression)中,我们也是在进行线性回归。然而,与普通线性回归不同的是,局部加权线性回归是一种局部线性回归方法。它通过引入权值(核函数),在进行预测时,只使用与测试点相近的部分样本来计算回归系数。普通线性回归则是全局线性回归,它使用全部的样本来计算回归系数

优缺点 & 适用场景

优点就是通过核函数加权来预防欠拟合,缺点也很明显K需要调试。当多元线性回归过拟合的时候,可以尝试高斯核局部加权来预防过拟合。

十一、贝叶斯岭回归

使用贝叶斯推断方法求解的线性回归模型被称为贝叶斯线性回归

贝叶斯线性回归是一种将线性模型的参数视为随机变量的方法,并通过先验计算后验。贝叶斯线性回归可以通过数值方法求解,在特定条件下也可以得到解析形式的后验或相关统计量

贝叶斯线性回归具有贝叶斯统计模型的基本性质,可以求解权重系数的概率密度函数,进行在线学习以及基于贝叶斯因子(Bayes factor)的模型假设检验

优缺点 & 适用场景

贝叶斯回归的优点在于其具有数据自适应能力,可以重复利用数据并防止过度拟合。在估计过程中,可以引入正则化项,例如在贝叶斯线性回归中引入L2正则化项,就可以实现贝叶斯岭回归

缺点就是学习过程开销太大。当特征数在10个以为,可以尝试贝叶斯回归。

以上就是常用的回归算法及其特点在机器学习中的应用的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/456093.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 01:28:58
下一篇 2025年11月8日 01:31:20

相关推荐

  • 人工智能如何将数据中心转变为可持续性的动力

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 数据中心历来是许多技术进步的支柱,现在面临的不仅仅是基础设施提供商的问题。人工智能的快速发展凸显了数据中心迫切需要更加敏捷、创新和协作,为这个新时代提供动力。 人工智能和机器学习的蓬勃发展,加上…

    2025年12月2日 科技
    000
  • 如何通过人工智能(AI)和机器学习应对零售劳动力和执行方面的挑战

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 斑马技术大中华区技术总监 程宁 面对不断增长的需求,零售团队人员数量及具体运营执行是否能及时匹%ignore_a_1%,正成为零售商们不得不面临的挑战。零售团队人员的短缺将使商店难以正常运营。当…

    2025年12月2日
    000
  • 用于数据增强的十个Python库

    数据增强是人工智能和机器学习领域的一项关键技术。它涉及到创建现有数据集的变体,提高模型性能和泛化。python是一种流行的ai和ml语言,它提供了几个强大的数据增强库。在本文中,我们将介绍数据增强的十个python库,并为每个库提供代码片段和解释。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索…

    2025年12月1日 科技
    000
  • 机器学习算法中的特征筛选问题

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 机器学习算法中的特征筛选问题 在机器学习领域中,特征筛选是一个非常重要的问题,它的目标是从大量的特征中选择出对预测任务最有用的特征。通过特征筛选可以降低维度,减少计算复杂度,提高模型的准确性和解…

    2025年12月1日 科技
    000
  • 解决不均衡数据集的分类方法有哪些?

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 在机器学习领域,不平衡数据集是一种常见问题,指的是训练数据集中不同类别的样本数量差异很大。例如,在二分类问题中,正样本数量远远小于负样本数量。这会导致训练出的模型更倾向于预测数量更多的类别,而忽…

    2025年12月1日 科技
    000
  • 零知识机器学习:应用与发展潜力

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 零知识机器学习(Zero-Knowledge Machine Learning,ZKML)是一种新兴的机器学习技术,旨在在保护数据隐私的同时实现机器学习任务。它的潜力在于解决当前机器学习中普遍存…

    2025年12月1日 科技
    000
  • 了解自动编码器的训练方法:从架构探究开始

    噪声数据是机器学习中常见的问题之一,自动编码器是解决这类问题的有效方法。本文将介绍自动编码器的结构和正确训练方法。 自动编码器是一种无监督学习的人工神经网络,用于学习数据的编码。其目标是通过训练网络来捕捉输入图像的关键特征,并将其转化为低维表示,常用于降维处理。 自动编码器的架构 自动编码器由3部分…

    2025年12月1日 科技
    000
  • 零基础图像识别的学习方法

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 基于零次学习的图像识别是一种新兴的技术,它与传统的图像识别方法不同。传统的图像识别需要通过训练数据来学习特征和分类规则,而零次学习则不需要预先训练模型。它是根据待识别图像的特征进行实时分类,从而…

    2025年12月1日 科技
    000
  • 手写识别技术及其算法分类

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 机器学习技术的进步必定推动手写识别技术的发展。本文将重点介绍目前表现优异的手写识别技术和算法。 matlab基础知识简介 中文WORD版 MATLAB(矩阵实验室)是MATrix LABorat…

    2025年12月1日 科技
    000
  • 拥抱未来:塑造 2024 年的顶尖技术

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 在充满活力的技术创新领域,每一年都会带来一系列进步,重新定义我们的生活、工作以及与周围世界互动的方式。 步入 2024 年,大量突破性技术有望彻底改变我们生活的各个方面,从医疗保健、交通到通信和…

    2025年12月1日 科技
    000
  • Web 端实时防挡脸弹幕(基于机器学习)

    防挡脸弹幕,即大量弹幕飘过,但不会遮挡视频画面中的人物,看起来像是从人物背后飘过去的。 机器学习已经火了好几年了,但很多人都不知道浏览器中也能运行这些能力; 本文介绍在视频弹幕方面的实践优化过程,文末列举了一些本方案可适用的场景,期望能开启一些脑洞。 mediapipe Demo(https://g…

    2025年12月1日 科技
    000
  • 机器人技能大比拼

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 2023年6月30日,合肥市瑶海区的三十八中学北校区成功举办了第八届青少年机器人竞赛。超过400名青少年在全区参与了包括机器人创意、综合技能和创新挑战在内的8个项目的比赛,共同感受科技的魅力。(…

    2025年12月1日 科技
    100
  • 智能化解决方案:保障数据安全阻击泄露和丢失

    网络安全是一场不断进行的战斗,每天都会出现新的威胁,首席信息安全官 (ciso) 正在努力跟进。他们承受着警报的压力,团队也面临着挑战。因此,ciso 及其团队面临着持续的压力,需要寻找新的创新方法来保护组织免受伤害。其中一种应对方法是利用人工智能 (ai) 的力量。人工智能可以帮助识别潜在威胁,自…

    2025年12月1日 科技
    000
  • 统计学界传奇C.R.Rao去世,他见证了统计学的百年历程

    %ignore_a_1%传奇大师c. r. rao已经离世,享年102岁 学过统计学的人都对他的名字不会感到陌生—— Cramér-Rao不等式是以他和Harald Cramér的名字命名的 他在《统计与真理》的扉页上写下的一句话,在中文世界中广为流传: 在终极的分析中,一切知识都是历史;在抽象的意…

    2025年12月1日 科技
    000
  • 九种常用的Python特征重要性分析方法

    特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 为什么特征重要性分析很重要? 如果有一个包…

    2025年12月1日 科技
    000
  • 人工智能和机器学习将如何改变数据中心?

    高盛预计,到 2025 年,全球人工智能投资预计将达到 2000 亿美元。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 这些快速发展的技术的巨大潜力刺激了其用例的显着增加,从医疗保健转型到增强客户体验。 尽管人们已经对人工智能和机器学习在…

    2025年12月1日 科技
    000
  • 使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

    强化学习(rl)是一种机器学习方法,它允许代理通过试错来学习如何在环境中表现。行为主体会因为采取行动导致预期结果而获得奖励或受到惩罚。随着时间的推移,代理会学会采取行动,以使得其预期回报最大化 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ …

    2025年12月1日 科技
    000
  • 2023年AI和ML在数据中心的十大新兴应用

    人工智能(ai)和机器学习(ml)已经成为数据中心领域的关键技术。到2023年,我们将目睹数据中心运营、效率和安全性的革命,这要归功于人工智能和机器学习的应用。这些技术越来越多地实现了任务的自动化,优化了资源管理,并提高了整个数据中心的性能。本文详细探讨了十种新兴的数据中心应用,这些应用将在今年彻底…

    2025年12月1日 科技
    100
  • 机器学习 | PyTorch简明教程上篇

    前面几篇文章介绍了特征归一化和张量,接下来开始写两篇pytorch简明教程,主要介绍pytorch简单实践。 1、四则运算 import torcha = torch.tensor([2, 3, 4])b = torch.tensor([3, 4, 5])print(“a + b: “, (a + …

    2025年12月1日 科技
    100
  • 机器学习|PyTorch简明教程下篇

    接着上篇《pytorch简明教程上篇》,继续学习多层感知机,卷积神经网络和lstmnet。 1、多层感知机 多层感知机是一种简单的神经网络,也是深度学习的重要基础。它通过在网络中添加一个或多个隐藏层来克服线性模型的限制。具体的图示如下: ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限…

    2025年12月1日 科技
    000

发表回复

登录后才能评论
关注微信