新一代技术:边缘智能实现实时数据处理和智能决策

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

新一代技术:边缘智能实现实时数据处理和智能决策

Labs 导读

边缘智能(Edge Intelligence)是一种将人工智能(AI)和边缘计算相结合的新兴技术。传统的人工智能应用通常依赖于云计算中心进行数据处理和决策,但这种方式存在延迟和网络带宽的问题。

Part 01、  什么是边缘智能   

边缘智能(Edge Intelligence)是一种新兴的技术概念,它指的是将人工智能(AI)算法和模型部署在接近数据源的物联网设备及其附近的网络节点上进行实时数据处理和分析的能力。在过去几年中,AI的快速发展引发了许多创新应用和解决方案。然而,随着AI模型的规模和复杂性不断增加,传统的云计算架构面临着一系列挑战,如高延迟、网络拥塞和数据隐私等问题。为了克服这些挑战,边缘计算和人工智能的结合应运而生,形成了边缘智能的概念。边缘智能不仅将AI模型的训练和推理移动到离用户更近的边缘设备上,如智能手机、传感器、路由器、监控摄像头等。通过在这些边缘设备上进行实时数据处理,快速响应和分析数据,并在本地做出决策,从而避免了将所有数据发送到云端进行处理的延迟和安全隐患,为AI应用带来了许多新的机会。

关于边缘智能的范围和评级,已有研究认为边缘智能是利用终端设备、边缘节点和云数据中心层次结构中的可用数据和资源来优化深度神经网络模型(DNN)的整体训练和推理性能。这意味着边缘智能不一定要在边缘进行训练或推理,而是可以通过数据卸载实现云、边、端的协同工作。根据数据卸载的数量和路径长度,将边缘智能分为六个等级

新一代技术:边缘智能实现实时数据处理和智能决策

在计算延迟和能耗增加的代价下,随着边缘智能等级的提高,数据卸载的数量和路径长度会减少,从而降低数据卸载的传输时延,增加数据隐私性,减少网络带宽成本。

Part 02、边缘智能模型训练 

边缘分布式深度神经网络训练架构可分为三种模式:集中式、分布式、混合式(云边端协同)

新一代技术:边缘智能实现实时数据处理和智能决策

➪ 集中式:DNN模型在云数据中心进行训练,用于训练的数据是从分布式终端设备(如手机、汽车和监控摄像头)生成和收集的,一旦数据到达,云数据中心将使用这些数据进行DNN训练。基于集中式架构的系统,可以根据系统采用的具体推理方式,在边缘智能中识别为第1级、第2级或第3级。

新一代技术:边缘智能实现实时数据处理和智能决策

➪ 分布式:每个计算节点使用本地数据在本地训练各自的DNN模型,并将私有信息保存在本地。通过共享本地训练更新来获得全局DNN模型。该模式下,无需云数据中心干预即可训练全局DNN模型,对应边缘智能的第5级。

新一代技术:边缘智能实现实时数据处理和智能决策

➪ 混合式(云边端协同):结合集中式和分布式,边缘服务器可以通过分布式更新来训练DNN模型,或者使用云数据中心来集中式训练。对应边缘智能中的第4级和第5级。

目前,边缘智能模型训练方法,主要通过训练损失、收敛性、隐私性、通信成本、延迟能源效率这6个关键性能指标来评价。

边缘智能模型训练所支持的技术如下所示:

新一代技术:边缘智能实现实时数据处理和智能决策

Part 03、 边缘智能模型推理 

高质量的边缘智能服务部署,除了实现深度学习模型的分布式训练,还需要在边缘高效地实现模型推理。边缘智能的推理模型,分为基于边缘、基于设备、边缘-设备和边缘-云四种模式。

新一代技术:边缘智能实现实时数据处理和智能决策

➪ 基于边缘的推理模型:设备处于边缘模式,接收输入数据,然后将他们发送到边缘服务器。边缘服务器完成DNN模型推理,并将预测结果返回给设备。推理性能依赖于设备与边缘服务器之间的网络带宽。

➪ 基于设备的推理模型:设备处于设备模式,移动设备从边缘服务器获取DNN模型,并在本地完成模型推理,在推理过程中,移动设备不断与边缘服务器通信,因此需要移动设备具有CPU、GPU和RAM等资源。

新一代技术:边缘智能实现实时数据处理和智能决策

➪ 基于边缘-设备的推理模型:设备处于边缘-设备模式,设备首先根据网络带宽、设备资源和边缘服务器负载等因素将DNN模型划分为多个部分;然后将DNN模型执行到特定层,并将中间数据发送给边缘服务器。边缘服务器将执行剩余层,并将预测结果发送到设备上。

➪ 基于边缘-云的推理模型:设备处于边缘-云模式,设备负责收集输入数据,并通过云边协同执行DNN模型。

边缘智能模型推理的性能主要通过延迟、精度、能量效率、隐私性、通信成本内存占用这六个指标来进行评价。

边缘智能模型训练所支持的技术如下所示:

新一代技术:边缘智能实现实时数据处理和智能决策

Part 04、  边缘智能的研究方向  

边缘智能作为一种新兴的技术领域,有着广阔的研究方向和发展潜力,根据边缘智能的技术特点和应用场景,未来可从以下几个方面进行研究:

编程和软件平台。随着越来越多人工智能驱动的计算密集型移动和物联网应用的出现,边缘智能即服务(Edge Intelligence As a Service, EIaaS)将成为一种普适范式,具有强大边缘人工智能功能的EI平台将被开发和部署。边缘智能算法与模型设计。在边缘设备上开发高效的智能算法和模型,以实现更加智能的数据处理和决策能力。包括机器学习、深度学习、强化学习等算法在边缘设备上的优化和部署。安全和隐私问题。在边缘智能环境中保障数据的安全和隐私,包括数据传输的加密与认证、边缘设备的安全防护、用户隐私的保护等方面。计算感知网络技术。基于人工智能的计算密集型应用通常运行在分布式边缘计算环境中。因此,先进网络解决方案应该具有计算感知,在不同的边缘节点之间有效共享计算结果和数据。构建高效可靠的边缘智能网络架构,包括网络拓扑结构、数据传输协议、通信安全等。同时,利用边缘计算资源提供高速且低延迟的通信服务。应用场景与系统设计。将边缘智能技术应用于各个领域,如智能交通、智能制造、智能城市、健康医疗等,探索适应性强、高效可靠的边缘智能系统设计,以解决实际问题并推动行业发展。边缘计算与数据处理。将边缘设备中的计算能力和存储能力充分利用起来,实现数据的实时处理和分析。同时,在资源有限的边缘设备上优化计算和存储资源的管理和调度,提高计算效率和资源利用率,以提高系统的效率和性能。边缘智能的自适应学习与优化。使边缘智能系统能够根据环境和需求的变化自主学习和优化,提供更加智能化的服务和决策。边缘智能与其他相关领域的结合。边缘智能与物联网、5G通信、云计算等技术的结合,以实现更加综合、高效的智能化方案。

以上就是新一代技术:边缘智能实现实时数据处理和智能决策的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/458664.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 02:33:40
下一篇 2025年11月8日 02:38:14

相关推荐

  • html搜索框如何跳转_实现HTML搜索框跳转搜索结果【结果】

    HTML搜索框跳转失败多因表单action或参数错误,可通过五种方法解决:一、百度用form提交至https://www.baidu.com/s?q=关键词;二、Google类似,action为https://www.google.com/search;三、JavaScript拼接必应URL并loc…

    2025年12月23日
    200
  • 从OpenAI API JSON响应中高效提取生成文本内容

    本教程详细指导开发者如何从openai api返回的json格式响应中准确提取生成的文本。通过利用`json.parse()`方法解析响应字符串,并访问`choices[0].text`属性,可以安全、高效地获取核心文本内容,从而避免直接字符串操作的潜在问题,确保api数据处理的健壮性。 OpenA…

    2025年12月23日
    000
  • HTML语义化未来趋势有哪些_HTML语义化在Web发展中的趋势与展望

    HTML语义化正朝着智能、高效、包容发展,深度融合结构化数据与ARIA属性,提升机器理解;2. 组件化趋势推动可复用语义结构普及,Web Components实现自定义语义标签;3. 语义化助力性能优化与可访问性,支持懒加载与内容优先级划分;4. AI工具将自动生成语义化代码并辅助检测,降低实践门槛…

    2025年12月23日
    000
  • HTML数据如何实现数据智能 HTML数据智能分析的技术架构

    实现HTML数据智能分析需构建包含采集、解析、存储、分析与可视化的闭环系统,首先通过爬虫技术获取网页数据并进行清洗标准化,接着利用DOM树分析与NLP技术提取结构化信息,随后将数据存入合适数据库或数据仓库并建立元数据管理机制,进而应用AI模型开展分类、情感分析、趋势预测与知识图谱构建等智能分析,最终…

    2025年12月23日
    000
  • HTML5 section怎么用_HTML5内容分区标签应用场景说明

    在HTML5中,标签用于定义文档中具有明确主题的独立内容区块,需包含标题以体现其结构性与语义性,常用于文章章节、产品模块等场景,区别于无语义的和可独立分发的。 在HTML5中,section 标签用于定义文档中的一个独立内容区块。它不是简单的容器,而是有语义的结构化标签,表示文档中一个主题性的分区,…

    2025年12月23日
    000
  • htm算法 前景如何_分析HTM算法应用前景

    HTM算法在实时异常检测、预测性维护等时序数据场景中具备应用价值,其无需大量标注数据的特性适合工业监控、网络安防等领域;但受限于生态薄弱、性能不及主流模型及工程实现难度,短期内难以成为主流,更可能作为边缘计算或AI系统补充技术,在特定专业领域持续发展。 HTM(Hierarchical Tempor…

    2025年12月23日
    000
  • HTML结构化数据怎么添加_Schema标记添加教程

    Schema标记通过结构化数据帮助搜索引擎理解网页内容,提升搜索结果展示效果,如添加星级评分、价格等富文本信息。使用JSON-LD或Microdata格式将符合Schema.org标准的类型(如Article、Product)嵌入HTML中,可增强SEO,需通过Google Rich Results…

    2025年12月22日
    000
  • 如何实现自定义提示

    掌握自定义提示需构建迭代工作流,通过明确目标、设定角色、提供上下文、结构化输出、示例引导、迭代优化、负面提示和链式思考,实现AI输出的精准控制与高效协同。 实现自定义提示,核心在于理解与AI模型交互的本质,并将其从“提问”升级为“引导”。它不是简单的抛出问题,而是通过精心设计的语言结构、上下文信息、…

    2025年12月22日
    000
  • JavaScript机器学习与人工智能库应用

    JavaScript在AI领域应用扩展,依托TensorFlow.js实现浏览器内模型推理与训练,利用WebGL加速;ML5.js提供高层接口,简化图像识别、风格迁移等功能调用;Brain.js支持轻量级神经网络开发,适用于前端智能场景如实时检测、自动补全等,虽性能不及Python,但在交互式轻量应…

    2025年12月20日
    100
  • LangChain HNSWLib 向量存储机制与数据持久化指南

    本文详细解析langchain中hnswlib向量存储的工作原理,明确其作为内存存储的特性,指出数据实际存储在项目部署的服务器上,而非langchain官方服务器。同时,文章将指导如何通过save_local()方法将内存中的向量数据持久化到本地文件,确保数据安全与可靠性,并探讨在实际应用中的注意事…

    2025年12月20日
    000
  • 使用LINE Bot与OpenAI API发送文本和贴图的完整教程

    本文详细介绍了如何在LINE Bot中集成OpenAI API生成文本回复,并在此基础上发送LINE贴图。核心挑战在于LINE Messaging API的replyToken通常只能使用一次,导致连续发送文本和贴图时出现400错误。解决方案是利用API支持一次性发送多条消息的特性,将文本和贴图消息…

    2025年12月20日
    000
  • C语言数据结构:数据结构在人工智能中的关键作用

    C 语言数据结构:数据结构在人工智能中的关键作用 概述 在人工智能领域,数据结构对于处理大量数据至关重要。数据结构提供了一种组织和管理数据的有效方法,优化算法和提高程序的效率。 常见的数据结构 立即学习“C语言免费学习笔记(深入)”; C 语言中常用的数据结构包括: 数组:一组连续存储的数据项,具有…

    2025年12月18日
    000
  • C语言算法问答集:将算法应用于人工智能

    搜索算法:二分查找,高效地在数组中查找元素。排序算法:快速排序,将数据序列按特定顺序排列。图形算法:dijkstra 算法,寻找两个节点间最短路径。机器学习算法:线性回归,训练模型对数据进行预测。 C 语言算法问答集:将算法应用于人工智能 前言 算法在人工智能(AI)中扮演着至关重要的角色,可为 A…

    2025年12月18日
    000
  • 人工智能如何提升 C 代码安全性检查

    答案:人工智能(ai)通过数据流分析、启发式检测和代码重构建议等方式提升了 c 代码安全性检查的效率。数据流分析:识别数据流并发现安全漏洞,如缓冲区溢出。启发式检测:学习已知漏洞模式并识别类似模式。代码重构建议:提供将不安全代码转换为安全替代方案的建议。 人工智能提升 C 代码安全性检查 简介C 语…

    2025年12月18日
    000
  • 人工智能支持的 C 代码覆盖率分析

    人工智能支持的 C 代码覆盖率分析 在软件开发中,代码覆盖率分析是一个关键步骤,它可以帮助开发人员识别未执行的代码路径。传统的方法通常涉及编写测试场景并手动检查执行情况。然而,人工智能 (AI) 的出现为自动化和改进代码覆盖率分析过程开辟了新的可能性。 AI 在代码覆盖率分析中的作用 AI 算法可用…

    2025年12月18日
    000
  • 人工智能如何帮助 C 语言代码在嵌入式系统中应用?

    人工智能 (ai) 通过以下方式提升嵌入式 c 语言代码的应用:代码优化:识别高能量耗或计算密集型功能并将其优化。代码生成:使用自然语言处理 (nlp) 从规格中自动生成代码。测试和验证:自动化测试和验证过程,检测传统方法可能错过的缺陷。 人工智能如何提升嵌入式系统中 C 语言代码的应用 人工智能 …

    2025年12月18日
    000
  • 人工智能如何为 C 语言代码提供安全增强功能?

    人工智能通过提供以下功能来提升 c 代码安全性:静态分析:识别潜在安全漏洞(例如缓冲区溢出);动态分析:监控代码执行并检测异常行为;模糊测试:生成随机输入以测试代码的异常行为;自动化修复:建议修复措施或自动生成补丁程序。 人工智能赋能 C 代码:提升安全性 人工智能 (AI) 在 C 代码安全方面发…

    2025年12月18日
    100
  • 人工智能如何增强 C 语言代码的调试能力?

    问题:如何增强 c 语言代码的调试能力?答案:利用人工智能 (ai) 技术,包括:ai 驱动的代码分析:使用机器学习模型识别潜在问题,例如内存泄漏和空指针引用。ide 集成:将代码分析工具集成到 ide 中,以便在开发环境中直接访问结果。自动异常处理:识别异常并自动采取行动,例如记录错误或中止应用程…

    2025年12月18日
    000
  • 人工智能如何提高 C 语言代码的可移植性?

    使用宏和条件编译提高 C 代码的可移植性 可移植性对于任何软件开发项目都至关重要,尤其是当代码需要跨不同平台编译时。C 语言作为一种底层语言,可移植性尤为关键。以下是使用宏和条件编译提高 C 代码可移植性的方法: 宏: 宏本质上是文本替换指令,允许在预处理阶段根据特定条件替换代码。例如,以下宏定义了…

    2025年12月18日
    000
  • 利用人工智能优化 C 代码构建和部署

    ai 优化了 c 代码构建和部署,包括: 1. 错误预测:及早发现错误,减少调试时间。 2. 资源优化:优化构建过程,缩短构建时间。 3. 并行构建:识别可并行执行的任务,缩短构建时间。 4. 版本控制:自动管理代码版本,确保部署顺畅。 5. 部署策略:建议最佳部署方法,提高应用程序可用性。 6. …

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信