从开发到部署:自动化机器学习

构建机器学习 (ml) 模型既引人入胜又复杂,需要仔细完成一系列步骤。从机器学习模型开发到部署,是人工智能落地的关键阶段。一个基于正确算法和相关数据、经过良好训练的模型,能够涵盖开发阶段,之后的重点将转向部署。

部署机器学习模型可能是一个繁琐的过程:构建 API、容器化、管理依赖项、配置云环境以及设置服务器和集群通常需要付出巨大的努力,但想象一下,如果整个工作流程可以自动化会怎样?在本文中,我们将讨论机器学习部署自动化如何统一和简化所有这些流程。使用通用工具、预配置模块和易于集成的自动化脚本可以简化部署过程。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

从开发到部署:自动化机器学习 - 创想鸟

在本文中,我将向您介绍如何训练 ML 模型、使用 Docker 对其进行容器化以及如何使用 Terraform 将其部署到云端,所有这些都使用自动化脚本,使流程可重用且适合 CI/CD。

自动化机器学习部署带来的好处

 自动化 ML 部署彻底改变了游戏规则:

使机器学习模型能够有效扩展几分钟内将模型投入生产消除耗时的重复步骤减少人为错误

使用的工具

要配置 ML 模型部署,我们需要一些基本工具和库:

Python 3.4+:用于训练和托管模型以及编写脚本来填补空白的核心编程语言scikit-learn:用于机器学习的 Python 库FastAPI:将 ML 模型作为 Web API 托管的 Python 库Docker:运行 Terraform 和 ML 模型Cloud CLI:需要安装才能与 Azure、AWS 和 GCP 等云平台交互Terraform:基础设施即代码(IaC)用于配置云资源

项目设置

现在,让我们设置项目并回顾每个步骤。该项目主要分为三个部分:

机器学习模型训练机器学习工作流程自动化使用 Terraform 的 IaC

该项目的结构如下:

ml_deploy/├── src/│   ├── app.py                  # FastAPI app that serves the ML model│   ├── train_model.py          # Trains and serializes the model│   ├── model.pkl               # Packaged ML model│   ├── requirements.txt        # Python libraries│   └── Dockerfile              # Defines the Docker image├── terraform/│   ├── main.tf                 # Terraform configuration file│   ├── variables.tf│   ├── outputs.tf│   └── terraform.tfvars        # Holds dynamic values like image name├── scripts/│   ├── build_model_and_image.py  # Automates model training + Docker│   └── install_terraform.py      # Runs Terraform inside Docker

机器学习模型训练

该流程的第一步是模型开发、训练模型并构建 API 来为其提供服务:

train_model.py/import picklefrom sklearn.linear_model import LogisticRegressionfrom sklearn.datasets import load_iris# Load dataX, y = load_iris(return_X_y=True)# Initialize and train modelmodel = LogisticRegression(max_iter=200)model.fit(X, y)# Save model to a filewith open("model.pkl", "wb") as f:    pickle.dump(model, f)

在上面的示例中,我们使用 scikit-learn在传统的鸢尾花物种数据集上训练了一个逻辑回归模型。我们使用Pickle 库对模型进行序列化,将所有依赖项封装到一个文件中。然后,FastAPI 服务器加载model.pkl该模型和端点以生成预测:/predictapp.py

app.py/from fastapi import FastAPIimport pickleimport numpy as npapp = FastAPI()model = pickle.load(open("model.pkl", "rb"))@app.get("/")def root():    return {"message": "Model running"}@app.post("/predict")def predict(data):    prediction = model.predict(np.array(data).reshape(1, -1))    return {"prediction": prediction.tolist()}

机器学习工作流自动化

经过训练的机器学习模型可以转化为一种服务,在可靠部署和访问的情况下,能够实时、大规模地交付。手动训练模型、通过构建 Docker 镜像部署模型以及更新配置文件可能是一个繁琐且容易出错的过程。自动化不仅可以提高效率,还可以简化工作流程。

我们使用两个 Python 脚本自动执行这些步骤:

build_model_and_image.py:此 Python 脚本可自动执行模型训练、Docker 镜像构建、推送到 DockerHub 以及更新.tfvarsTerraform 文件并将其组合到单个工作流中。build_model_and_image.py在 GitHub 上查看代码:https://github.com/yraj1457/MLOps/blob/main/scripts/build_model_and_image.py

build_model_and_image.py/import subprocessimport sys# Executes the train model Python codedef train_model():    print("Training the Model")    try:        subprocess.run(["python3", "train_model.py"], check=True, cwd=src_dir)    except Exception as e:        print(f"Error Training the Model: {e}")        sys.exit(1)# Builds the image after training the modeldef build_image():    print(f"Building the Docker Image: {docker_image}")    try:        subprocess.run(["docker", "build", "-t", docker_image, "."], check=True)    except Exception as e:        print(f"Error Building the Docker Image: {e}")        sys.exit(1)

install_terraform.py:此 Python 自动化脚本通过在 Docker 容器中运行 Terraform 来负责配置基础设施,从而确保无需单独安装 Terraform。install_terraform.py在 GitHub 上查看代码:https://github.com/yraj1457/MLOps/blob/main/scripts/install_terraform.py

install_terraform.py/import subprocessimport sysfrom pathlib import Path# Run the Trio, the three Terraform commandsdef run_terraform():    cmd_list = ['init', 'plan', 'apply']    for cmd in cmd_list:        print(f"Running Terraform {cmd}")        try:            subprocess.run(                f"docker run --rm -v {Path(terraform_dir).resolve()}:/workspace "                f"-w /workspace {terraform_image} {cmd}",                shell=True,                check=True            )        except Exception as e:            print(f"Error running Terraform {cmd}: {e}")            sys.exit(1)

这些自动化脚本填补了空白,并使工作流程在插入管道时可重复使用。

使用 Terraform 进行基础设施即代码

生产就绪服务需要部署。我们使用 Terraform 的 IaC,它允许我们定义整个云设置——包括运行模型的容器。它确保部署不仅自动化且一致,而且可跨环境移植。

基础设施由四个 Terraform 配置文件配置:main.tf、、和。Python 脚本使用官方 hashicorp/terraform Docker 镜像来运行 Terraform 命令(、、和),从而无需维护 Terraform 安装或版本,并在开发和部署之间提供了明确的划分variables.tf。outputs.tfterraform.tfvarsinitplanapply

下面的 Terraform 代码片段可以作为一个例子。它提供了一个 Azure 资源组和一个容器实例来托管机器学习 API。

main.tf/provider "azurerm" {  features {}}resource "azurerm_resource_group" "ml_rg" {  name     = var.resource_group_name  location = var.location}resource "azurerm_container_group" "ml_app" {  name                = "ml-model-api"  location            = azurerm_resource_group.ml_rg.location  resource_group_name = azurerm_resource_group.ml_rg.name  os_type             = "Linux"  container {    name   = "mlmodel"    image  = var.container_image    cpu    = "1.0"    memory = "1.5"    ports {      port     = 80      protocol = "TCP"    }  }  ip_address_type = "public"  dns_name_label  = var.dns_label}

该方法的完整代码库(包括所有脚本和配置文件)可在 GitHub 上找到:https://github.com/yraj1457/MLOps

为什么这种方法更有效

自动化脚本将各个流程整合在一起,从而实现更高效的方法,最大限度地减少人工干预,并优雅地记录错误。此外,通过在 Docker 容器中运行工具,我们最大限度地减少了依赖关系,并保证了跨环境的一致性。该架构融合了基础设施自动化、DevOps 和 MLOps 的最佳实践。

结论

本文展示了如何利用最少的工具、更少的依赖和最大程度的自动化,从机器学习模型训练到部署,为数据科学家和 MLOps 工程师节省大量重复性工作。我们利用 Python 编写的自动化脚本,并使用 Docker 封装模型和 Terraform,构建了一个可重用、自动化且可扩展的环境。

这种方法具有高度可移植性,可以插入任何 CI/CD 工具,例如 GitHub Actions 或 Azure DevOps。基础已从这里设置,您可以根据自己的需求进行修改。 

以上就是从开发到部署:自动化机器学习的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/46685.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月7日 19:34:02
下一篇 2025年11月7日 19:36:26

相关推荐

  • CSS mask属性无法获取图片:为什么我的图片不见了?

    CSS mask属性无法获取图片 在使用CSS mask属性时,可能会遇到无法获取指定照片的情况。这个问题通常表现为: 网络面板中没有请求图片:尽管CSS代码中指定了图片地址,但网络面板中却找不到图片的请求记录。 问题原因: 此问题的可能原因是浏览器的兼容性问题。某些较旧版本的浏览器可能不支持CSS…

    2025年12月24日
    900
  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 为什么设置 `overflow: hidden` 会导致 `inline-block` 元素错位?

    overflow 导致 inline-block 元素错位解析 当多个 inline-block 元素并列排列时,可能会出现错位显示的问题。这通常是由于其中一个元素设置了 overflow 属性引起的。 问题现象 在不设置 overflow 属性时,元素按预期显示在同一水平线上: 不设置 overf…

    2025年12月24日 好文分享
    400
  • 网页使用本地字体:为什么 CSS 代码中明明指定了“荆南麦圆体”,页面却仍然显示“微软雅黑”?

    网页中使用本地字体 本文将解答如何将本地安装字体应用到网页中,避免使用 src 属性直接引入字体文件。 问题: 想要在网页上使用已安装的“荆南麦圆体”字体,但 css 代码中将其置于第一位的“font-family”属性,页面仍显示“微软雅黑”字体。 立即学习“前端免费学习笔记(深入)”; 答案: …

    2025年12月24日
    000
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么我的特定 DIV 在 Edge 浏览器中无法显示?

    特定 DIV 无法显示:用户代理样式表的困扰 当你在 Edge 浏览器中打开项目中的某个 div 时,却发现它无法正常显示,仔细检查样式后,发现是由用户代理样式表中的 display none 引起的。但你疑问的是,为什么会出现这样的样式表,而且只针对特定的 div? 背后的原因 用户代理样式表是由…

    2025年12月24日
    200
  • inline-block元素错位了,是为什么?

    inline-block元素错位背后的原因 inline-block元素是一种特殊类型的块级元素,它可以与其他元素行内排列。但是,在某些情况下,inline-block元素可能会出现错位显示的问题。 错位的原因 当inline-block元素设置了overflow:hidden属性时,它会影响元素的…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 为什么使用 inline-block 元素时会错位?

    inline-block 元素错位成因剖析 在使用 inline-block 元素时,可能会遇到它们错位显示的问题。如代码 demo 所示,当设置了 overflow 属性时,a 标签就会错位下沉,而未设置时却不会。 问题根源: overflow:hidden 属性影响了 inline-block …

    2025年12月24日
    000
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 为什么我的 CSS 元素放大效果无法正常生效?

    css 设置元素放大效果的疑问解答 原提问者在尝试给元素添加 10em 字体大小和过渡效果后,未能在进入页面时看到放大效果。探究发现,原提问者将 CSS 代码直接写在页面中,导致放大效果无法触发。 解决办法如下: 将 CSS 样式写在一个单独的文件中,并使用 标签引入该样式文件。这个操作与原提问者观…

    2025年12月24日
    000
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 em 和 transition 设置后元素没有放大?

    元素设置 em 和 transition 后不放大 一个 youtube 视频中展示了设置 em 和 transition 的元素在页面加载后会放大,但同样的代码在提问者电脑上没有达到预期效果。 可能原因: 问题在于 css 代码的位置。在视频中,css 被放置在单独的文件中并通过 link 标签引…

    2025年12月24日
    100

发表回复

登录后才能评论
关注微信