交叉验证的重要性不容忽视!

为了不改变原始意思,需要重新表达的内容是:首先需要弄清楚为什么需要进行交叉验证

交叉验证是机器学习和统计学中常用的一种技术,用于评估预测模型的性能和泛化能力,特别是在数据有限或评估模型对新的未见数据的泛化能力时,交叉验证非常有价值。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

交叉验证的重要性不容忽视!

在哪些情况下会使用交叉验证呢?

模型性能评估:交叉验证有助于估计模型在未见数据上的表现。通过在多个数据子集上训练和评估模型,交叉验证提供了比单一训练-测试分割更稳健的模型性能估计。数据效率:在数据有限的情况下,交叉验证充分利用了所有可用样本,通过同时使用所有数据进行训练和评估,提供了对模型性能更可靠的评估。超参数调优:交叉验证通常用于选择模型的最佳超参数。通过在不同数据子集上使用不同的超参数设置来评估模型的性能,可以确定在整体性能上表现最好的超参数值。检测过拟合:交叉验证有助于检测模型是否对训练数据过拟合。如果模型在训练集上的表现明显优于验证集,可能表明存在过拟合的情况,需要进行调整,如正则化或选择更简单的模型。泛化能力评估:交叉验证提供了对模型对未见数据的泛化能力的评估。通过在多个数据分割上评估模型,它有助于评估模型捕捉数据中的潜在模式的能力,而不依赖于随机性或特定的训练-测试分割。

交叉验证的大致思想可如图5折交叉所示,在每次迭代中,新模型在四个子数据集上训练,并在最后一个保留的子数据集上进行测试,确保所有数据得到利用。通过平均分数及标准差等指标,提供了对模型性能的真实度量

交叉验证的重要性不容忽视!

一切还得从K折交叉开始。

KFold

在Sklearn中已经集成了K折交叉验证,这里以7折为例:

from sklearn.datasets import make_regressionfrom sklearn.model_selection import KFoldx, y = make_regression(n_samples=100)# Init the splittercross_validation = KFold(n_splits=7)

交叉验证的重要性不容忽视!

还有一个常用操作是在执行拆分前进行Shuffle,通过破坏样本的原始顺序进一步最小化了过度拟合的风险:

cross_validation = KFold(n_splits=7, shuffle=True)

交叉验证的重要性不容忽视!

这样,一个简单的k折交叉验证就能够完成了,请务必查看源代码!请务必查看源代码!请务必查看源代码!

StratifiedKFold

StratifiedKFold是专门为分类问题而设计。

在有的分类问题中,即使将数据分成多个集合,目标分布也应该保持不变。比如大多数情况下,具有30到70类别比例的二元目标在训练集和测试集中仍应保持相同的比例,在普通的KFold中,这个规则被打破了,因为在拆分之前对数据进行shuffle时,类别比例将无法保持。

为了解决这个问题,在Sklearn中使用了另一个专门用于分类的拆分器类——StratifiedKFold:

from sklearn.datasets import make_classificationfrom sklearn.model_selection import StratifiedKFoldx, y = make_classification(n_samples=100, n_classes=2)cross_validation = StratifiedKFold(n_splits=7, shuffle=True, random_state=1121218)

交叉验证的重要性不容忽视!

尽管与KFold看起来相似,但现在在所有的split和迭代中,类别比例保持一致

ShuffleSplit

有时只需多次重复进行训练/测试集分割的过程,这种方式与交叉验证非常相似

降重鸟 降重鸟

要想效果好,就用降重鸟。AI改写智能降低AIGC率和重复率。

降重鸟 113 查看详情 降重鸟

在逻辑上来说,通过使用不同的随机种子生成多个训练/测试集,应该在足够多的迭代中,类似于一个稳健的交叉验证过程

Scikit-learn库中也提供了相应的接口:

from sklearn.model_selection import ShuffleSplitcross_validation = ShuffleSplit(n_splits=7, train_size=0.75, test_size=0.25)

交叉验证的重要性不容忽视!

TimeSeriesSplit

当数据集为时间序列时,不能使用传统的交叉验证,这将完全打乱顺序,为了解决这个问题,参考Sklearn提供了另一个拆分器——TimeSeriesSplit,

from sklearn.model_selection import TimeSeriesSplitcross_validation = TimeSeriesSplit(n_splits=7)

交叉验证的重要性不容忽视!

在验证集始终位于训练集的索引之后的情况下,我们可以看到图形。这是由于索引是日期,这意味着我们不会意外地在未来的日期上进行时间序列模型的训练,并对之前的日期进行预测

非独立同分布(non-IID)数据的交叉验证

以上方法是针对独立同分布数据集进行处理的,即生成数据的过程不会受到其他样本的影响

然而,在某些情况下,数据并不满足独立同分布(IID)的条件,即一些样本之间存在依赖关系。这种情况在Kaggle竞赛中也有出现,比如Google Brain Ventilator Pressure竞赛。该数据记录了人工肺在数千个呼吸过程中(吸入和呼出)的气压值,并且对每次呼吸的每个时刻进行了记录。每个呼吸过程大约有80行数据,这些行之间是相互关联的。在这种情况下,传统的交叉验证方法无法使用,因为数据的划分可能会“刚好发生在一个呼吸过程的中间”

这可以被理解为需要对这些数据进行“分组”,因为组内数据是有关联的。举个例子,当从多个患者收集医疗数据时,每个患者都有多个样本。然而,这些数据很可能会受到患者个体差异的影响,因此也需要进行分组

往往我们希望在一个特定组别上训练的模型是否能够很好地泛化到其他未见过的组别,所以在进行交差验证时给这些组别数据打上“tag”,告诉他们如何区分别瞎拆。

在Sklearn中提供了若干接口处理这些情况:

GroupKFoldStratifiedGroupKFoldLeaveOneGroupOutLeavePGroupsOutGroupShuffleSplit

强烈建议搞清楚交叉验证的思想,以及如何实现,搭配看Sklearn源码是一个肥肠不错的方式。此外,需要对自己的数据集有着清晰的定义,数据预处理真的很重要。

以上就是交叉验证的重要性不容忽视!的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/469820.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 07:03:42
下一篇 2025年11月8日 07:08:06

相关推荐

  • HTML数据如何用于机器学习 HTML数据预处理的特征工程方法

    首先解析HTML提取文本与元信息,再从结构、文本、样式三方面构建特征:1. 用BeautifulSoup等工具解析HTML,提取标题、正文、链接及属性;2. 统计标签频率、DOM深度、路径模式等结构特征;3. 清洗文本并采用TF-IDF或词嵌入向量化;4. 提取class、id、样式、脚本等交互与视…

    2025年12月23日
    000
  • 标题标签:你想知道的一切

    html,用于构建网页的语言,严重依赖于标头标签。它们用于排列和组织网页内容,使其更易于阅读和理解。标题标签范围从 h1 到 h6。 h1 是最重要的标题标签,而 h6 是最不重要的。这些标题标签有助于组织页面的内容,使其更易于阅读和导航。它们还用于告知用户和搜索引擎有关页面内容的信息,这对于 se…

    2025年12月21日
    000
  • 如何用机器学习算法优化前端用户交互体验?

    通过机器学习分析用户行为数据,可实现前端交互的个性化与自适应优化。1. 利用LSTM、XGBoost等模型预测用户操作,实现智能补全与实时推荐;2. 借助强化学习与聚类算法动态调整UI布局,提升操作效率;3. 使用孤立森林等无监督方法检测异常交互,优化流程设计;4. 通过时序模型预测页面跳转,结合S…

    2025年12月20日
    000
  • C++机器学习入门 线性回归实现示例

    首先实现线性回归模型,通过梯度下降最小化均方误差,代码包含数据准备、训练和预测,最终参数接近真实关系,适用于高性能场景。 想用C++实现线性回归,其实并不复杂。虽然Python在机器学习领域更常见,但C++凭借其高性能,在对效率要求高的场景中非常适用。下面是一个简单的线性回归实现示例,帮助你入门C+…

    2025年12月18日
    000
  • C++中如何构建机器学习框架_张量运算实现

    要构建高效的c++++机器学习框架张量运算模块,需遵循以下核心步骤:1. 设计支持泛型的tensor类,包含内存管理与基础接口;2. 实现运算符重载以简化加减乘除操作;3. 采用simd、多线程及缓存优化提升性能;4. 使用openmp实现并行化加法;5. 利用strassen或winograd算法…

    2025年12月18日 好文分享
    000
  • 怎样在C++中实现决策树_机器学习算法实现

    决策树在c++++中的实现核心在于通过递归构建树节点,使用“如果…那么…”逻辑进行数据分裂,最终实现分类或预测。1. 数据结构方面,定义包含特征索引、分裂阈值、左右子节点、叶子节点值及是否为叶子的treenode结构;2. 分裂准则包括信息增益(id3)、信息增益率(c4.5)和基尼指数(cart)…

    2025年12月18日 好文分享
    000
  • C++ lambda 表达式与闭包在机器学习中的应用

    在机器学习中,lambda 表达式和闭包用于数据预处理、特征工程、模型构建和闭包。具体应用包括:数据规范化等数据预处理操作。创建新特征或转换现有特征。向模型添加自定义的损失函数、激活函数等组件。利用闭包访问外部变量,用于计算特定特征的平均值等目的。 C++ Lambda 表达式与闭包在机器学习中的应…

    2025年12月18日
    000
  • 如何将C++框架与机器学习集成

    如何将 c++++ 框架与机器学习集成?选择 c++ 框架: eigen、armadillo、blitz++集成机器学习库: tensorflow、pytorch、scikit-learn实战案例:使用 eigen 和 tensorflow 构建线性回归模型 如何将 C++ 框架与机器学习集成 引言…

    2025年12月18日
    000
  • 如何将 C++ 框架与机器学习技术集成?

    集成 c++++ 框架和机器学习技术,以提高应用程序性能和功能:准备数据和模型:收集数据,训练模型并将其保存为 tensorflow lite 格式。集成 tensorflow lite:在 c++ 项目中包含 tensorflow lite 头文件和库。加载模型:从文件加载 tensorflow …

    2025年12月18日
    000
  • 如何将 C++ 框架与机器学习算法集成?

    在 c++++ 框架中集成机器学习算法的步骤: 1. 选择合适的 c++ 框架,如 armadillo 或 tensorflow。 2. 获取机器学习算法库,如 scikit-learn 或 xgboost。 3. 通过构建工具将算法库集成到框架中。 4. 从算法库加载算法。 5. 利用框架工具训练…

    2025年12月18日
    000
  • 如何将C++框架与机器学习库集成?

    将c++++框架与机器学习库集成可提供强大的开发基础。步骤如下:选择c++框架(如qt、mfc、boost)选择机器学习库(如tensorflow、pytorch、scikit-learn)创建c++项目集成机器学习库(按照库说明)使用框架和库编写c++代码编译、运行并测试应用程序 如何将 C++ …

    2025年12月18日
    000
  • C++框架在机器学习领域的应用

    c++++框架在机器学习中得到广泛应用,提供预构建组件和工具。流行框架包括:tensorflow c++ api:google开发,提供广泛的算子、层和架构。pytorch:facebook开发,支持动态图计算和易用的python界面。c++ builder:embarcadero开发,集成开发环境…

    2025年12月18日
    000
  • 支持人工智能和机器学习的C++框架

    c++++ 中的人工智能和机器学习框架包括:深度学习框架:tensorflow:谷歌开发,用于大型神经网络pytorch:facebook 开发,用于创建灵活的可读模型机器学习库:armadillo:高性能线性代数和统计计算nlp 工具包:natural language toolkit (nltk…

    2025年12月18日
    000
  • 如何将C++框架与机器学习工具集成?

    如何将 c++++ 框架与机器学习工具集成?设置 tensorflow 和 boost。编写接口,将 tensorflow 对象公开给 boost 代码。使用 boost.python 导出接口,允许从 python 代码调用 tensorflow 方法。在实战案例中,集成 boost c++ 扩展…

    2025年12月18日
    000
  • C++框架与机器学习和人工智能的契合度?

    c++++框架与机器学习和人工智能高度契合,提供高性能、效率和灵活性。tensorflow:一个开源端到端ml/ai框架,提供构建、训练和部署ml模型的工具,如计算图。pytorch:一个基于python的框架,支持动态计算图。xgboost:专注于梯度增强树的框架。cntk:一个微软开发的框架,用…

    2025年12月18日
    000
  • 开始使用 C++ 机器学习框架需要具备哪些技能?

    掌握 c++++ 机器学习框架需要以下核心技能:1. c++ 基础;2. 线性代数和统计的数学基础;3. 机器学习算法和模型;4. 选择并熟悉 c++ ml 框架。例如,使用 eigen 计算协方差矩阵:它创建了一个数据矩阵,计算协方差矩阵,并将其打印到控制台。 踏入 C++ 机器学习框架之旅的必备…

    2025年12月18日
    000
  • C++ 框架在人工智能和机器学习中的应用有什么前景?

    c++++ 框架在 ai/ml 中前景广阔,由于其高性能、内存效率和跨平台兼容性。流行的 c++ 框架包括 tensorflow lite、caffe2 和 scikit-learn。在实战案例中,tensorflow lite 用于图像分类,加载模型、创建解释器、预处理图像、执行推理和获取结果。 …

    2025年12月18日
    100
  • 哪种C++框架最适合用于机器学习和数据科学?

    对于机器学习和数据科学,最流行的 c++++ 框架包括:tensorflow:用于构建和训练机器学习模型pytorch:用于原型化和调试新模型xgboost:用于基于树的机器学习算法opencv:用于计算机视觉任务 探索用于机器学习和数据科学的顶级 C++ 框架 C++ 以其速度、效率和对复杂项目的…

    2025年12月18日
    000
  • 如何调试和解决 C++ 机器学习框架中的问题?

    调试和解决 c++++ 机器学习框架中的问题的步骤:使用调试器(例如 gdb 或 lldb)。检查日志文件以查找错误消息。使用断言来检查条件。打印调试信息以输出变量值。分析异常消息和堆栈跟踪。 如何调试和解决 C++ 机器学习框架中的问题 调试 C++ 机器学习框架中的问题可能是一个挑战,因为它涉及…

    2025年12月18日
    000
  • C++ 机器学习框架的最佳实践和设计模式有哪些?

    c++++ 机器学习框架的最佳实践包括:抽象化和接口隔离依赖关系和松散耦合高内聚和低耦合测试驱动开发设计模式(如工厂方法、单例模式和观察者模式) C++ 机器学习框架的最佳实践和设计模式 机器学习算法在现代软件开发中发挥着至关重要的作用。许多 C++ 框架可用于开发机器学习模型,例如 TensorF…

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信