云上智能驾驶三维重建优秀实践

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

云上智能驾驶三维重建优秀实践

智能驾驶技术的不断发展,正在改变着我们的出行方式和交通系统。作为其中的一个关键技术,三维重建在智能驾驶系统中起着重要的作用。除去车端本身的感知、重建算法,自动驾驶技术的落地与发展需要庞大的云端重建能力支撑,火山引擎多媒体实验室通过行业领先的自研三维重建技术,结合强大的云平台资源与能力,助力相关技术在云端大规模重建、自动标注、真实感仿真等场景的落地与应用。

本文重点介绍火山引擎多媒体实验室三维重建技术在动态、静态场景的以及结合先进光场重建技术的原理与实践,帮助大家能更好的了解和认识云上智能三维重建如何服务智能驾驶领域,助力行业发展。

一、技术挑战与难点

驾驶场景重建需要对道路环境做点云级别的三维重建,与传统的三维重建技术应用场景相比,驾驶场景重建技术有以下难点:

车辆运行过程中的环境因素复杂且不可控,不同天气、光照、车速、路况等均会对车载传感器采集到的数据造成影响,这对重建技术的鲁棒性带来了挑战。道路场景中经常会出现特征退化和纹理缺失的情况,例如相机获取到视觉特征不丰富的图像信息,或者激光雷达获取到相似性较高的场景结构信息,同时,路面作为重建中的关键要素之一,色彩单一且缺少足够的纹理信息,这对重建技术提出了更高的要求。车载传感器数量较多,常见的有相机、激光雷达、毫米波雷达、惯导、GPS定位系统、轮速计等等,如何将多传感器的数据融合起来得到更精确的重建结果,对重建技术提出了挑战。道路中存在运动车辆、非机动车、行人等动态物体,会对传统重建算法带来挑战,如何剔除动态物体对静态场景重建带来干扰,同时对动态物体的位置、大小、速度进行估计,也是项目的难点之一。

二、驾驶场景重建技术介绍

自动驾驶领域的重建算法通常会采用激光雷达、相机为主,GPS、惯导为辅的技术路线。激光雷达可以直接获取高精度的测距信息,能够快速得到场景结构,通过预先进行的激光雷达-相机联合标定,相机获取到的图像能够为激光点云赋予色彩、语义等信息。同时,GPS和惯导可以进行辅助定位,减少重建过程中因为特征退化而出现的漂移现象。但是,由于多线激光雷达售价较高,通常用于工程车辆,而在量产车上很难得到规模化的使用。

对此,火山引擎多媒体实验室自研了一套纯视觉的驾驶场景重建技术,包括静态场景重建、动态物体重建和神经辐射场重建技术,能够区分场景中的动静态物体,还原出静态场景的稠密点云,并突出路面、指示牌、红绿灯等关键要素;能够对场景中运动物体的位置、大小、朝向和速度进行有效的估计,用于后续的4D标注;能够在静态场景重建的基础上,使用神经辐射场对场景进行重建和复现,实现自由视角的漫游,可用于场景编辑和仿真渲染。这套技术解决方案不依赖激光雷达,且能够达到分米级的相对误差,用最小的硬件成本实现接近激光雷达的重建效果。

2.1 静态场景重建技术:剔除动态干扰、还原静态场景

视觉重建技术以多视角几何作为基础的理论依据,要求待重建的场景或者物体具有帧间一致性,即在不同图像帧中处在静止状态,因此需要在重建过程中剔除动态物体。根据场景中的不同要素的重要性,稠密点云中需要去除无关紧要的点云,而保留一些关键要素点云,因此需要事先对图像进行语义分割。对此, 火山引擎 多媒体实验室结合AI技术与多视角几何基本原理,搭建了一套先进的鲁棒、精确完整视觉重建算法框架。重建过程包括三个关键步骤 :图像预处理、稀疏重建和稠密重建 

云上智能驾驶三维重建优秀实践

车载相机拍摄过程中处在运动状态,由于曝光时间的存在,采集到的图像中会随着车速提高而出现严重的运动模糊现象。另外,出于节约带宽和存储空间考虑,传输过程中会对图像进行不可逆的有损压缩,造成画质的进一步降低。为此, 火山引擎多媒体实验室使用了端到端的神经网络对图像进行去模糊处理,能够在抑制运动模糊现象的同时对图像质量进行提升。去模糊前后的对比如下图所示。

云上智能驾驶三维重建优秀实践

去模糊前(左) 去模糊后(右)

为了区分出动态物体,火山引擎多媒体实验室使用了基于光流的动态物体识别技术,能够得到像素级别的动态物体掩膜。在之后的静态场景重建过程中,落在动态物区域上的特征点将被剔除,只有静态的场景和物体将得到保留。

云上智能驾驶三维重建优秀实践

光流(左) 运动物体(右)

稀疏重建过程中需要同时计算相机的位置、朝向和场景点云,常用的有SLAM算法(Simultaneous localization and mapping)和SFM算法(Structure from Motion,简称SfM)。在不要求实时性的情况下,SFM算法能够得到更高的重建精度。但是,传统的SFM算法通常将每个相机当作独立相机来进行处理,而车辆上通常会在前后左右不同方向布置多个相机,这些相机之间的相对位置其实是固定不变的(忽略车辆振动带来的细微变化)。如果忽视相机与相机之间的相对位置约束,计算出来的各相机位姿误差会比较大。另外,当遮挡比较严重时,个别相机的位姿会难以计算。对此,火山引擎多媒体实验室自研了基于相机组整体的SFM算法,能够利用相机之间的先验相对位姿约束,以相机组作为整体来计算位姿,同时使用了GPS加惯导的融合定位结果对相机组中心位置进行约束,可有效地提高位姿估计的成功率和准确率,并能改善不同相机之间的点云不一致现象,减少点云分层现象。

降重鸟 降重鸟

要想效果好,就用降重鸟。AI改写智能降低AIGC率和重复率。

降重鸟 113 查看详情 降重鸟

云上智能驾驶三维重建优秀实践

云上智能驾驶三维重建优秀实践

传统SFM(左) 相机组SFM(右)

由于地面色彩单一、纹理缺失,传统的视觉重建很难还原出完整的地面,但是地面上存在车道线、箭头、文字/标识等关键要素,因此火山引擎多媒体实验室采用了二次曲面来拟合地面,辅助进行地面区域的深度估计和点云融合。和平面拟合相比,二次曲面更贴合实际道路场景,因为实际的路面往往并不是一个理想平面。以下是分别用平面方程和二次曲面方程来拟合地面的效果对比。

云上智能驾驶三维重建优秀实践

平面方程(左) 二次曲面方程(右)

将激光点云视作真值,并将视觉重建结果与之叠加,可以直观地衡量重建点云的准确性。从下图中可以看到,重建点云和真值点云贴合度非常高,经过测量得到重建结果的相对误差在15cm左右。

云上智能驾驶三维重建优秀实践

火山引擎多媒体实验室重建结果(彩色)与真值点云(白色)

以下是火山引擎多媒体实验室视觉重建算法和某主流商业重建软件的效果对比。可以看到,和商业软件相比,火山引擎多媒体实验室的自研算法重建效果更好、更完整,场景中的路牌、红绿灯、电线杆,以及路面上车道线、箭头等还原度非常高,而商业软件的重建点云非常稀疏,且路面大范围缺失。

云上智能驾驶三维重建优秀实践

某主流商业软件(左) 火山引擎多媒体实验室算法(右)

2.2 动态重建技术:

在图像上对物体进行3d标注十分困难,需要借助于点云,当车辆只有视觉传感器时,获取场景中目标物体的完整点云十分困难。特别是动态物体,无法使用传统的三维重建技术获取其稠密点云。为提供运动物体的表达,服务于4d标注,使用3d bounding box(以下简称3d bbox)对动态物体进行表示,通过自研动态重建算法获取每一时刻场景中动态物体的3d bbox姿态、大小、速度等,从而补全动态物体重建能力。

云上智能驾驶三维重建优秀实践

动态重建pipeline

对车辆采集的每一帧图像,首先提取场景中的动态目标,生成3d bbox的初始提议,提供两种方式:使用2d目标检测,通过相机位姿估计对应的3d bbox;直接使用3d目标检测。两种方式针对不同数据可以灵活进行选择,2d检测泛化性好,3d检测可以获得更好的初值。同时,对图像动态区域内部的特征点进行提取。获取单帧图像初始3d bbox提议及特征点后,建立多帧间数据关联:通过自研多目标跟踪算法建立物体匹配,并通过特征匹配技术对图像特征进行匹配。获取匹配关系后,将有共视关系的图像帧创建为局部地图,构建优化问题求解全局一致的目标bbox估计。具体地,通过特征点的匹配以及动态三角化技术,恢复动态3d点;对车辆运动建模,联合优化物体、3d点、相机之间的观测,从而获得最优估计的动态物体3d bbox。

云上智能驾驶三维重建优秀实践

2d生成3d(左二) 3d目标检测示例

2.3 NeRF 重建:真实感渲染、自由视角

使用神经网络进行隐式重建,利用可微渲染模型,从已有视图中学习如何渲染新视角下的图像,从而实现照片级逼真的图像渲染, 即神经辐射场(NeRF)技术。同时,隐式重建具有可编辑、查询连续空间的特性,可以用于自动驾驶场景中自动标注、仿真数据构建等任务。使用NeRF技术对场景进行重建是非常有价值的。

云上智能驾驶三维重建优秀实践

火山引擎多媒体实验室融合神经辐射场技术与大场景建模技术。在具体实践中,首先针对数据进行处理,场景中的动态物体会使NeRF重建出现伪影,借助自研动静态分割、影子检测等算法,对场景中和几何不一致的区域进行提取,生成mask,同时利用视频inpainting算法,对剔除掉的区域进行修复。借助自研三维重建能力,对场景进行高精度的几何重建,包括相机参数估计以及稀疏、稠密点云生成。另外,对场景进行拆分以减小单次训练资源消耗,并可做分布式训练、维护。在神经辐射场训练过程中,针对室外无边界大场景,团队通过一些优化策略以提升该场景下的新视角生成效果,如通过在训练中同时优化位姿提高重建精度,基于哈希编码的层次化表达提升模型训练速度,借助外观编码提升不同时间采集场景的外观一致性等,借助mvs稠密深度信息提升几何精度等。团队同毫末智行合作,完成单路采集以及多路合并的NeRF重建,相关成果已在毫末AI Day发布。

云上智能驾驶三维重建优秀实践

动态物/影子剔除,填补

以上就是云上智能驾驶三维重建优秀实践的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/474289.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 08:48:04
下一篇 2025年11月8日 08:48:46

相关推荐

  • Node.js与区块链项目中CP-ABE实现策略:跨语言方案与集成考量

    本文探讨了在Node.%ignore_a_1%和区块链项目中实现密文策略属性基加密(CP-ABE)所面临的挑战,指出JavaScript生态中缺乏维护良好的原生库。文章详细介绍了Python、Rust、C++和Go等语言中成熟的CP-ABE库,并提出了跨语言集成策略及在区块链环境中应用CP-ABE的…

    2025年12月21日
    000
  • CP-ABE在Node.js与区块链应用中的实现路径探究

    CP-ABE在Node.js和区块链项目中的实现面临JavaScript库稀缺的挑战。本文将探讨当前主流的CP-ABE库生态,指出Python、C++和Rust等语言中的成熟解决方案,并讨论Node.js绑定及Go语言库作为替代方案的可行性,为开发者提供跨语言集成的策略与建议,以克服JavaScri…

    2025年12月21日
    000
  • C++ 函数在云计算中的应用

    c++++ 函数在云计算中广泛应用,具有无服务器架构、动态扩展、成本效益和跨平台兼容性等优势。实战案例包括图像处理,利用 c++ lambda 表达式可以简化函数创建,扩展云应用程序的范围。从图像处理到数据分析再到机器学习,c++ 函数在云计算中提供了丰富的应用场景。 C++ 函数在云计算中的应用 …

    2025年12月18日
    000
  • C++ 自身函数在云计算环境下的适用性如何?

    c++++ 自身函数在云计算中广泛应用于高性能计算和数据分析,具有以下优势:高性能:c++ 自身函数经过高度优化,性能卓越,尤其适用于处理大型数据集。并行化:支持多线程并行化,充分利用多核处理器。内存管理:通过指针和引用提供细粒度控制,优化资源利用。跨平台兼容性:可编译运行于不同操作系统和云平台,增…

    2025年12月18日
    000
  • C++框架在云计算中的应用:弹性、可伸缩性和成本优化

    c++++ 框架在云计算中提供弹性、可伸缩性和成本优化:弹性:异常处理、故障转移和容错功能确保应用程序高可用性。可伸缩性:自动扩缩、负载均衡和分布式处理应对变化的工作负载。成本优化:资源监控、性能优化和自动化提高利用率,减少超额支出。 C++ 框架在云计算中的应用:弹性、可伸缩性和成本优化 随着云计…

    2025年12月18日
    000
  • 如何将 C++ 框架与云计算技术集成?

    C++ 框架与云计算技术集成步骤:选择云平台并评估其服务。根据云平台指导配置框架。使用云平台提供的库与服务交互。将集成应用部署到云平台以利用其优势。实战案例:使用 Boost.Asio 与 Azure Cosmos DB 集成的代码示例如下:#include #include // 创建 Azure…

    2025年12月18日
    000
  • 如何将C++框架与云计算平台集成?

    文章介绍了在 c++++ 框架中集成云计算平台,有以下策略:sdk 集成:通过云平台提供的 sdk 访问云服务。rest api 调用:直接调用 rest api 端点进行资源管理和数据交换。微服务:将 c++ 框架包装成微服务部署在云平台上进行通信。 如何在C++框架中集成云计算平台 引言 将C+…

    2025年12月18日
    000
  • C++框架内置功能与云计算的兼容性

    在将 c++++ 应用程序迁移到云端时,需要考虑其内置框架功能与云计算环境的兼容性:异步 i/o 和事件驱动编程与云平台(如 aws lambda)的异步处理机制是否兼容。资源管理机制(如内存池和线程池)是否与云平台提供的资源管理相兼容,避免资源泄漏或争用。配置和部署工具是否与基础设施即代码 (ia…

    2025年12月18日
    000
  • C++框架在云计算领域的需求度高不高?

    c++++ 框架在云计算中的高需求原因:性能:c++ 高效、跨平台的特性。可扩展性:并行性和并发性支持。实战案例:使用 qt c++ 和 azure cosmos db 创建 iot 解决方案。使用 boost.asio 和 aws s3 创建云存储应用程序。 C++ 框架在云计算中的高需求 随着云…

    2025年12月18日
    000
  • C++框架在云计算领域有哪些最佳实践?

    最佳实践指导在#%#$#%@%@%$#%$#%#%#$%@_1fefd5a9127ae81c++d9e10ebb95084366中使用 c++ 框架:使用无服务器架构以降低成本和提高可扩展性。采用微服务设计以实现可扩展性和容错性。实施云原生日志记录和监控以支持故障排除和优化性能。利用云原生数据库以获…

    2025年12月18日
    000
  • 云计算对优化C++框架性能的潜在影响

    #%#$#%@%@%$#%$#%#%#$%@_1fefd5a9127ae81c++d9e10ebb95084366可优化 c++ 框架性能,方法如下:并行化和多线程化:利用云平台的多核服务器和分布式计算资源,将任务分配到多个线程或进程,显著提升性能。弹性扩展:利用按需缩放能力,自动调整资源使用情况,…

    2025年12月18日
    100
  • C++框架对云计算的影响

    c++++ 框架对云计算的影响:高性能:c++ 框架可创建高效代码,满足云计算应用程序对快速处理大量数据的需求。可扩展性:随着应用程序需求增长,c++ 框架可轻松扩展,满足云计算环境中用户和数据量的不断增长。可靠性:c++ 框架基于可靠的 c++ 语言,为云计算应用程序提供高稳定性,确保关键任务数据…

    2025年12月18日
    000
  • 如何在云环境中扩展和部署C++框架?

    在云环境中扩展和部署 c++++ 框架:创建 docker 镜像:创建包含 c++ 依赖项的 dockerfile。容器化 c++ 应用程序:创建入口点脚本,并修改 dockerfile 以指定入口点和端口。部署到 kubernetes:创建 kubernetes 部署和服务文件以部署 c++ 应用…

    2025年12月18日
    000
  • C++框架在智能驾驶领域的应用

    c++++框架在智能驾驶领域广泛应用,因为它具有高性能、可靠性和可扩展性。案例包括apollo(百度)、autoware.auto(adl)和carla(epic games)。在开发智能驾驶系统时,应选择合适的框架并遵循以下步骤:1. 选择框架;2. 设计系统架构;3. 编写代码;4. 集成框架功…

    2025年12月18日
    000
  • C++框架在云计算中的应用

    c++++ 框架在云计算中的应用:好处: 提升性能、增强可扩展性、提高可用性。实战案例: google cloud platform (gcp) 开发 web 应用程序。框架推荐: google cloud c++ framework。其他框架: boost.asio、libevent、cpp-ne…

    2025年12月18日
    000
  • C++框架在云计算和大数据领域的前景如何?

    c++++ 框架在云计算和大数据领域具有广泛应用前景。具体优势包括:云计算:异步 i/o 支持的高并发服务器,大规模资源调度,基础设施自动化和虚拟化。大数据:高效分布式数据处理,机器学习和深度学习模型开发,高吞吐量和低延迟的 nosql 数据库。 C++ 框架在云计算和大数据领域的广阔前景 C++ …

    2025年12月18日
    000
  • C++ 框架对容器化和云计算的影响

    c++++ 框架通过以下功能增强了容器化和云计算:异步 i/o,提升性能和响应能力网络功能集成,简化与网络协议交互容器感知,优化容器环境下的配置真实案例:boost::asio 构建的容器化 http 服务器,利用容器感知进行自动配置,部署于云平台。 C++ 框架对容器化和云计算的影响 在现代软件开…

    2025年12月18日
    100
  • C++ 框架在云计算领域的应用:简化部署与可扩展性

    c++++ 框架在云计算中应用广泛,简化了应用程序部署和可扩展性:通过自动化部署,减少了手动配置需求。提供了自动扩展机制,根据需求动态调整应用程序资源。实现了故障转移机制,保证应用程序在故障情况下保持可用。 C++ 框架在云计算领域的应用:简化部署与可扩展性 引言 云计算已成为现代 IT 基础设施的…

    2025年12月18日
    000
  • C++ 框架在云计算中的独特优势有哪些?

    c++++ 框架在云计算中的独特优势包括:高性能:编译语言,直接与硬件交互,适合高性能应用,利用云平台的并行处理和多核优势。健壮性:对异常和错误处理良好,适合云端运行应用程序,应对故障和中断。跨平台:可在 aws、azure、google cloud 等云平台编译和部署,实现应用程序在云环境间的无缝…

    2025年12月18日
    000
  • C++ 框架中并发和多线程处理与云计算

    并发和多线程处理在 c++++ 框架中至关重要,它可以通过标准库线程 (std::thread)、openmp 和并发队列和数据结构等功能实现。这些功能使开发人员能够通过并行化代码分段、安全共享数据和管理并发任务来充分利用多核硬件和分布式云计算环境。通过使用这些工具和库,应用程序可以显著提升性能和吞…

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信