用搜索增强生成技术解决人工智能幻觉问题

作者| rahul pradhan

来源| https://www.infoworld.com/article/3708254/addressing-ai-hallucinations-with-retrieval-augmented-generation.html

人工智能有望成为当代最具影响力的技术。最近在transformer技术和生成式人工智能方面取得的进展已经展示了其大规模释放创新和独创性的潜力。

然而,生成式人工智能并非没有挑战——这些挑战甚至可能会严重阻碍这一变革性技术的应用和价值创造。随着生成式人工智能模型的复杂性和能力不断提高,它们也带来了独特的挑战,包括生成不基于输入数据的输出

这些所谓的 “幻觉 “是指模型产生的输出结果虽然连贯,但可能脱离了事实或输入背景。本文将简要介绍生成式人工智能的变革性影响,审视该技术的不足和挑战,并讨论可用于缓解幻觉的技术。

生成式人工智能的变革效应

重新表述为:生成式人工智能模型利用深度学习这一复杂计算过程来识别大量数据集中的模式,并利用这些信息创造出新的、令人信服的输出。这些模型采用了机器学习技术中的神经网络,其灵感源自于人脑处理和解释信息的方式,并随着时间的推移不断学习进步

OpenAI的GPT-4和谷歌的PaLM 2等生成式人工智能模型有望在自动化、数据分析和用户体验方面带来创新。这些模型可以编写代码、总结文章,甚至帮助诊断疾病。然而,这些模型的可行性和最终价值取决于它们的准确性和可靠性。在医疗保健、金融或法律服务等关键领域,准确性的可靠性至关重要。但对于所有用户来说,要充分发挥生成式人工智能的潜力,就必须解决这些挑战

大型语言模型的缺点

LLM 从根本上说是概率性和非确定性的。它们根据下一个特定词序出现的可能性生成文本。LLM 没有知识概念,完全依赖于通过训练有素的数据语料库作为推荐引擎进行导航。它们生成的文本一般遵循语法和语义规则,但完全以满足与提示的统计一致性为基础。

LLM 的这种概率性质既是优点也是缺点。如果目标是得出正确答案或根据答案做出关键决定,那么幻觉就是不好的,甚至会造成损害。然而,如果目标是创造性的努力,那么可以利用 LLM 培养艺术创造力,从而相对较快地创作出艺术作品、故事情节和剧本。

AI建筑知识问答 AI建筑知识问答

用人工智能ChatGPT帮你解答所有建筑问题

AI建筑知识问答 22 查看详情 AI建筑知识问答

然而,无论目标如何,无法信任 LLM 模型的输出都会造成严重后果。这不仅会削弱人们对这些系统能力的信任,还会大大降低人工智能对加速人类生产力和创新的影响。

最终,人工智能的好坏取决于它所训练的数据。LLM 的幻觉主要是数据集和训练的缺陷造成的,包括以下方面:

过度拟合: 当模型对训练数据(包括噪声和异常值)的学习效果太好时,就会出现过度拟合。模型的复杂性、训练数据的噪声或训练数据的不足都会导致过度拟合。这会导致低质量的模式识别,使模型无法很好地泛化到新数据中,从而导致分类和预测错误、与事实不符的输出、信噪比低的输出或完全的幻觉。 数据质量: 用于训练的数据的错误标记和错误分类可能在幻觉中起重要作用。有偏差的数据或缺乏相关数据实际上会导致模型输出结果看似准确,但可能被证明是有害的,这取决于模型建议的决策范围。 数据稀缺: 数据稀缺或对新鲜或相关数据的需求是导致幻觉并阻碍企业采用生成式人工智能的重要问题之一。使用最新内容和上下文数据刷新数据有助于减少幻觉和偏见。

解决大型语言模型中的幻觉

有几种方法可以解决 LLM 中的幻觉问题,包括微调、提示工程和检索增强生成 (RAG) 等技术。

微调是指使用特定领域的数据集重新训练模型,以便更准确地生成与该领域相关的内容。然而,重新训练或微调模型需要较长的时间,此外,如果不持续训练,数据很快就会过时。此外,重新训练模型也会带来巨大的成本负担。 提示工程旨在通过在输入中提供更多描述性和说明性特征作为提示,帮助 LLM 得出高质量的结果。为模型提供额外的上下文并使其立足于事实,这样就能降低模型产生幻觉的可能性。 检索增强生成(RAG)是一种侧重于用最准确、最新的信息为 LLM 提供基础的框架。通过实时向模型提供来自外部知识库的事实,可以改善 LLM 的响应。

检索增强生成和实时数据

检索增强生成是提高大型语言模型准确性的最有前途的技术之一。事实证明,RAG 与实时数据相结合可大大减轻幻觉。

RAG通过利用最新的专有数据和上下文数据,使企业能够利用LLM。此外,RAG还能够利用特定语境信息丰富输入内容,从而帮助语言模型生成更准确、与语境更相关的响应。在企业环境中,微调往往是不切实际的,但RAG提供了一种低成本、高收益的替代方案,可用于提供个性化、信息灵通的用户体验

为了提高 RAG 模型的效率,有必要将 RAG 与可操作的数据存储结合起来,该数据存储能够以 LLMs 的母语存储数据,即被称为嵌入的高维数学向量,用于编码文本的含义。当用户提出查询时,数据库会将其转换为数字向量。这样,无论是否包含相同的术语,都可以通过向量数据库查询相关文本。

高可用性、高性能、能够使用语义搜索存储和查询海量非结构化数据的数据库是 RAG 流程的关键组成部分。

以上就是用搜索增强生成技术解决人工智能幻觉问题的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/474726.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 08:53:23
下一篇 2025年11月8日 08:58:18

相关推荐

  • html搜索框如何跳转_实现HTML搜索框跳转搜索结果【结果】

    HTML搜索框跳转失败多因表单action或参数错误,可通过五种方法解决:一、百度用form提交至https://www.baidu.com/s?q=关键词;二、Google类似,action为https://www.google.com/search;三、JavaScript拼接必应URL并loc…

    2025年12月23日
    200
  • 从OpenAI API JSON响应中高效提取生成文本内容

    本教程详细指导开发者如何从openai api返回的json格式响应中准确提取生成的文本。通过利用`json.parse()`方法解析响应字符串,并访问`choices[0].text`属性,可以安全、高效地获取核心文本内容,从而避免直接字符串操作的潜在问题,确保api数据处理的健壮性。 OpenA…

    2025年12月23日
    000
  • HTML语义化未来趋势有哪些_HTML语义化在Web发展中的趋势与展望

    HTML语义化正朝着智能、高效、包容发展,深度融合结构化数据与ARIA属性,提升机器理解;2. 组件化趋势推动可复用语义结构普及,Web Components实现自定义语义标签;3. 语义化助力性能优化与可访问性,支持懒加载与内容优先级划分;4. AI工具将自动生成语义化代码并辅助检测,降低实践门槛…

    2025年12月23日
    000
  • HTML数据如何实现数据智能 HTML数据智能分析的技术架构

    实现HTML数据智能分析需构建包含采集、解析、存储、分析与可视化的闭环系统,首先通过爬虫技术获取网页数据并进行清洗标准化,接着利用DOM树分析与NLP技术提取结构化信息,随后将数据存入合适数据库或数据仓库并建立元数据管理机制,进而应用AI模型开展分类、情感分析、趋势预测与知识图谱构建等智能分析,最终…

    2025年12月23日
    000
  • HTML5 section怎么用_HTML5内容分区标签应用场景说明

    在HTML5中,标签用于定义文档中具有明确主题的独立内容区块,需包含标题以体现其结构性与语义性,常用于文章章节、产品模块等场景,区别于无语义的和可独立分发的。 在HTML5中,section 标签用于定义文档中的一个独立内容区块。它不是简单的容器,而是有语义的结构化标签,表示文档中一个主题性的分区,…

    2025年12月23日
    000
  • htm算法 前景如何_分析HTM算法应用前景

    HTM算法在实时异常检测、预测性维护等时序数据场景中具备应用价值,其无需大量标注数据的特性适合工业监控、网络安防等领域;但受限于生态薄弱、性能不及主流模型及工程实现难度,短期内难以成为主流,更可能作为边缘计算或AI系统补充技术,在特定专业领域持续发展。 HTM(Hierarchical Tempor…

    2025年12月23日
    000
  • HTML结构化数据怎么添加_Schema标记添加教程

    Schema标记通过结构化数据帮助搜索引擎理解网页内容,提升搜索结果展示效果,如添加星级评分、价格等富文本信息。使用JSON-LD或Microdata格式将符合Schema.org标准的类型(如Article、Product)嵌入HTML中,可增强SEO,需通过Google Rich Results…

    2025年12月22日
    000
  • 如何实现自定义提示

    掌握自定义提示需构建迭代工作流,通过明确目标、设定角色、提供上下文、结构化输出、示例引导、迭代优化、负面提示和链式思考,实现AI输出的精准控制与高效协同。 实现自定义提示,核心在于理解与AI模型交互的本质,并将其从“提问”升级为“引导”。它不是简单的抛出问题,而是通过精心设计的语言结构、上下文信息、…

    2025年12月22日
    000
  • JavaScript机器学习与人工智能库应用

    JavaScript在AI领域应用扩展,依托TensorFlow.js实现浏览器内模型推理与训练,利用WebGL加速;ML5.js提供高层接口,简化图像识别、风格迁移等功能调用;Brain.js支持轻量级神经网络开发,适用于前端智能场景如实时检测、自动补全等,虽性能不及Python,但在交互式轻量应…

    2025年12月20日
    100
  • LangChain HNSWLib 向量存储机制与数据持久化指南

    本文详细解析langchain中hnswlib向量存储的工作原理,明确其作为内存存储的特性,指出数据实际存储在项目部署的服务器上,而非langchain官方服务器。同时,文章将指导如何通过save_local()方法将内存中的向量数据持久化到本地文件,确保数据安全与可靠性,并探讨在实际应用中的注意事…

    2025年12月20日
    000
  • 使用LINE Bot与OpenAI API发送文本和贴图的完整教程

    本文详细介绍了如何在LINE Bot中集成OpenAI API生成文本回复,并在此基础上发送LINE贴图。核心挑战在于LINE Messaging API的replyToken通常只能使用一次,导致连续发送文本和贴图时出现400错误。解决方案是利用API支持一次性发送多条消息的特性,将文本和贴图消息…

    2025年12月20日
    000
  • C语言数据结构:数据结构在人工智能中的关键作用

    C 语言数据结构:数据结构在人工智能中的关键作用 概述 在人工智能领域,数据结构对于处理大量数据至关重要。数据结构提供了一种组织和管理数据的有效方法,优化算法和提高程序的效率。 常见的数据结构 立即学习“C语言免费学习笔记(深入)”; C 语言中常用的数据结构包括: 数组:一组连续存储的数据项,具有…

    2025年12月18日
    000
  • C语言算法问答集:将算法应用于人工智能

    搜索算法:二分查找,高效地在数组中查找元素。排序算法:快速排序,将数据序列按特定顺序排列。图形算法:dijkstra 算法,寻找两个节点间最短路径。机器学习算法:线性回归,训练模型对数据进行预测。 C 语言算法问答集:将算法应用于人工智能 前言 算法在人工智能(AI)中扮演着至关重要的角色,可为 A…

    2025年12月18日
    000
  • 人工智能如何提升 C 代码安全性检查

    答案:人工智能(ai)通过数据流分析、启发式检测和代码重构建议等方式提升了 c 代码安全性检查的效率。数据流分析:识别数据流并发现安全漏洞,如缓冲区溢出。启发式检测:学习已知漏洞模式并识别类似模式。代码重构建议:提供将不安全代码转换为安全替代方案的建议。 人工智能提升 C 代码安全性检查 简介C 语…

    2025年12月18日
    000
  • 人工智能支持的 C 代码覆盖率分析

    人工智能支持的 C 代码覆盖率分析 在软件开发中,代码覆盖率分析是一个关键步骤,它可以帮助开发人员识别未执行的代码路径。传统的方法通常涉及编写测试场景并手动检查执行情况。然而,人工智能 (AI) 的出现为自动化和改进代码覆盖率分析过程开辟了新的可能性。 AI 在代码覆盖率分析中的作用 AI 算法可用…

    2025年12月18日
    000
  • 人工智能如何帮助 C 语言代码在嵌入式系统中应用?

    人工智能 (ai) 通过以下方式提升嵌入式 c 语言代码的应用:代码优化:识别高能量耗或计算密集型功能并将其优化。代码生成:使用自然语言处理 (nlp) 从规格中自动生成代码。测试和验证:自动化测试和验证过程,检测传统方法可能错过的缺陷。 人工智能如何提升嵌入式系统中 C 语言代码的应用 人工智能 …

    2025年12月18日
    000
  • 人工智能如何为 C 语言代码提供安全增强功能?

    人工智能通过提供以下功能来提升 c 代码安全性:静态分析:识别潜在安全漏洞(例如缓冲区溢出);动态分析:监控代码执行并检测异常行为;模糊测试:生成随机输入以测试代码的异常行为;自动化修复:建议修复措施或自动生成补丁程序。 人工智能赋能 C 代码:提升安全性 人工智能 (AI) 在 C 代码安全方面发…

    2025年12月18日
    100
  • 人工智能如何增强 C 语言代码的调试能力?

    问题:如何增强 c 语言代码的调试能力?答案:利用人工智能 (ai) 技术,包括:ai 驱动的代码分析:使用机器学习模型识别潜在问题,例如内存泄漏和空指针引用。ide 集成:将代码分析工具集成到 ide 中,以便在开发环境中直接访问结果。自动异常处理:识别异常并自动采取行动,例如记录错误或中止应用程…

    2025年12月18日
    000
  • 人工智能如何提高 C 语言代码的可移植性?

    使用宏和条件编译提高 C 代码的可移植性 可移植性对于任何软件开发项目都至关重要,尤其是当代码需要跨不同平台编译时。C 语言作为一种底层语言,可移植性尤为关键。以下是使用宏和条件编译提高 C 代码可移植性的方法: 宏: 宏本质上是文本替换指令,允许在预处理阶段根据特定条件替换代码。例如,以下宏定义了…

    2025年12月18日
    000
  • 利用人工智能优化 C 代码构建和部署

    ai 优化了 c 代码构建和部署,包括: 1. 错误预测:及早发现错误,减少调试时间。 2. 资源优化:优化构建过程,缩短构建时间。 3. 并行构建:识别可并行执行的任务,缩短构建时间。 4. 版本控制:自动管理代码版本,确保部署顺畅。 5. 部署策略:建议最佳部署方法,提高应用程序可用性。 6. …

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信